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Active turbulence, or chaotic self-organized collective motion, is often observed
in concentrated suspensions of motile bacteria and other systems of self-propelled
interacting agents. To date, there is no fundamental understanding of how geometrical
confinement orchestrates active turbulence and alters its physical properties. Here,
by combining large-scale experiments, computer modeling, and analytical theory, we
have identified a generic sequence of transitions occurring in bacterial suspensions
confined in cylindrical wells of varying radii. With increasing the well’s radius, we
observed that persistent vortex motion gives way to periodic vortex reversals, four-
vortex pulsations, and then well-developed active turbulence. Using computational
modeling and analytical theory, we have shown that vortex reversal results from the
nonlinear interaction of the first three azimuthal modes that become unstable with the
radius increase. The analytical results account for our key experimental findings. To
further validate our approach, we reconstructed equations of motion from experimental
data. Our findings shed light on the universal properties of confined bacterial active
matter and can be applied to various biological and synthetic active systems.

active matter | active turbulence | bacteria | vortex | weakly nonlinear analysis

Interacting self-propelled particles, often termed active matter, exhibit a remarkable
tendency to self-organization and the onset of collective behavior. Being intrinsically
out-of-equilibrium, active matter systems exhibit a slew of collective phenomena such
as the spontaneous onset of long-range order (1–5), odd viscoelasticity (6), rectifications
of chaotic flows (7–10), and reduction of the effective viscosity (11, 12). One of
the most visible manifestations of collective dynamics in active matter systems is
the emergence of self-sustained spatiotemporal chaotic flows termed active turbulence
(13–18). In stark contrast to conventional Navier–Stokes turbulence, active turbulence,
occurring for essentially zero Reynolds numbers, is characterized by the well-defined
characteristic length scale. In the case of bacterial turbulence, this scale corresponds
to typical vortex size, which is about 40 to 50 μm (14, 15). The existence of the
typical vortex size allows transforming bacterial motion into stable vortex arrays under
geometrical confinements (19–24) or in the presence of periodic obstacles (9, 10).

Experimental and computational studies of self-organization of bacterial and related
active systems have shown that strong confinement, e.g., a cylindrical well, may suppress
active turbulence and generate persistent vortex motion (19, 20, 22–24). However, a
fundamental question on the nature of the transition from ordered states under strong
confinement to chaotic motion in unconstrained systems remains open. Answering this
question will shed light on intricate fundamental mechanisms of self-organization in a
broad class of active systems under confinement.

In the context of active nematics exemplified by microtubules-motors assays, multiple
experimental and numerical studies interrogated a transition from ordered quasi-
stationary states to chaotic motion that occurs under the confinement in channels, rings,
and wells (25–32). The primary observation is that the instability of static nematic
configuration occurs via unbinding and subsequent chaotic motion of half-integer
topological defects. Moreover, in the context of cytoplasmic streaming (31, 32), the
onset of spontaneous circulation and consequent periodic modulations of the circulation
rate were observed for the system confined in a cylindrical well. More specifically, the
analysis predicted a supercritical instability of steady-state vortex with the increase in
the well radius. The instability occurred via the gradual unbinding of two half-integer
nematic defects with the amplitude of the oscillations vanishing at the critical radius.

However, it is unclear how these insights could be projected on polar systems, e.g.
suspensions of swimming bacteria, where the polar symmetry of the systems would
prohibit the above scenario. Also, in the bacterial suspensions, experimental investigations
have been hindered by the difficulty in resolving the detailed dynamics very close to the
transition point and the necessity of long-time measurements for evaluating the vortex
stability.
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Here, we examine the route to active turbulence by combining
large-scale experiments, high-resolution numerical modeling, and
analytical theory. We focused on a well-characterized active
system: suspensions of swimming bacteria (5). We confined the
suspensions into an array of isolated cylindrical wells comparable
to the size of individual vortices. We systematically varied the
wells’ radii to characterize the transition from stabilized vortices to
bacterial turbulence. Increasing the well radius, we have detected
reversals of vortex rotation as the first instability from a stable
vortex. The reversals were also captured as periodic oscillations
in our numerical simulations and analytical theory, unraveling
a robust fundamental mechanism for the onset of polar active
turbulence. In stark contrast to nematic systems (31, 32) where
a local Hopf bifurcation results in small-amplitude periodic
modulations of the steady-state circulation that keeps the same
rotation direction (no reversals), in our case, the reversals occur
via a global subcritical infinite period bifurcation with hysteresis,
where the reversal period diverges at the threshold. Four-vortex
pulsations follow the vortex reversal with a further increase in the
radius. The observed transitions differ from the reversals caused
by the viscoelasticity of the suspending fluid (33) or density
gradients (34). Our analysis revealed that the reversal originate
from the nonlinear interaction of the three lowest azimuthal
modes near the linear instability threshold. To validate our
theoretical arguments, we reconstructed equations of motion
from experiential data. Our studies indicate that the vortex
reversal is a generic precursor of turbulence-like behavior in
bacterial and related active systems. Our findings provide insights
into how geometrical confinement orchestrates spatiotemporal
organization in a broad class of active systems.

Results

Experiment. We conducted experiments with suspensions of
swimming bacteria confined in cylindrical wells, Fig. 1 A and B.
The height of the wells was set to 30 μm, which is smaller than
the typical length scale of collective motion, ensuring effectively
two-dimensional dynamics within each well. This constrained the
range of radii for observation (SI Appendix, Supplementary Note
1G). Experiments were conducted simultaneously in an array of
isolated wells of different radii (≈400 wells in total); see Fig. 1D
and SI Appendix, Fig. S1, and Movies S1–S10. We observed
stabilized vortices with steady rotational directions within the
wells with small radii. For larger radii, the vortices exhibited
a transition to unsteady configurations with reversing rotation
directions. This observation is exemplified by the instantaneous
vorticity field !(r, t) = ẑ · [∇ × v(r, t)] shown in Fig. 1C, where
ẑ is the unit vector in the z-direction. As one sees from Fig. 1C,
the smaller wells hosted a single stabilized vortex with persistent
rotation, with the velocity and vorticity profiles shown in Figs. 1E
and 2A. In contrast to previous studies on bacterial suspensions
confined in water-in-oil droplets (19, 20), we did not observe
any counterrotating edge flows, suggesting different boundary
conditions for collective motion.

To quantify the vortex rotation direction, we defined a spin
variable for each well as,

Si(t) :=

ẑ ·
∑

r∈i-th well

(r− ri)× v(r, t)∑
r∈i-th well

|r− ri|
, [1]

where ri is the center of the i-th well, and the summations run
over the area of the i-th well. As shown in Fig. 1 E and F, the spins

for the small wells stayed almost constant and rarely flipped their
signs over time, while the spins for the larger wells persistently
alternated their signs, reflecting the reversals of vortices. The spin
probability distribution for such a well with reversals exhibits a
bimodal distribution, indicating the presence of two states with
clockwise (CW, Si < 0) and counterclockwise (CCW, Si > 0)
rotations (Fig. 2B); see SI Appendix, Fig. S6, Supplementary Note
1H, and Movie S10 for a well exhibiting faster reversals. Contrary
to ref. (24), our setup uses two symmetric surfaces for the top
and bottom to compensate for systematic bias in the rotation
direction. Thus, the fraction of CW rotations as a function of
the well’s radius was always ≈0.5, Fig. 2D. The absence of bias
is crucial for characterizing the vortex reversals. The transition
from a single stabilized vortex to reversing vortices was inspected
through the spin correlation time, defined as the time at which
the autocorrelation function of the spins decayed to 1/e; see SI
Appendix, Fig. S4. The correlation time has successfully captured
the transition at the radii of approximately 46 to 48 μm (Fig. 2C ).
For large wells’ radii, four-vortex pulsating states were observed
as well, Fig. 1C. The pulsation was characterized by the kinetic
energy of azimuthal modes corresponding to 2n vortices within
a well (SI Appendix, Supplementary Note 4),

mexp
n =

∫ R

0
drr
∣∣∣∣ 1
2�

∫
d�e−in�v(r, �)

∣∣∣∣2 . [2]

By this mode analysis, we probed antiphase oscillation of the
modes n = 1 and n = 2; see Fig. 1G.

Further increase in the radius destabilized the four-vortex
pulsations, resulting in chaotic turbulent flow (Fig. 1C and SI
Appendix, Fig. S5). For radii much smaller than those for the
stabilized single-vortex state, such stable vortex formation was
suppressed and we observed random-like motion of individual
bacteria; see SI Appendix, Fig. S4 and Movie S9.

Computational Modeling. We performed numerical simulations
using a phenomenological active fluid model, the Toner–Tu–
Swift–Hohenberg equation (TTSHE) (5, 10, 15–17). The
TTSHE qualitatively captures the bulk properties of polar
active turbulence. It can describe the transformation of bacterial
turbulence into stable vortex arrays in the presence of periodic
obstacles (9, 10) and has been used to investigate the instability
of the emergent order (35). In the vorticity representation, the
dimensionless TTSHE is of the form (10):

∂!
∂t

+ �v · ∇! = a!− b∇×
[
|v|2v

]
−
(
1 + ∇2)2!− 
v∇× [K (r)v]− 
!K (r)!,

[3]

where �, a, and b are constants, K (r) ≥ 0 is a scalar field
that dampens v and ! outside the well (K ' 1) without
affecting the inside (K ' 0), and 
v,! > 0 are damping
coefficients. In this dimensionless form, the vortex characteristic
size is 2�. Following ref. 10, we adopt the parameter values
(�, a, b, 
v, 
!) = (9, 0.5, 1.6, 40, 4) and impose three boundary
conditions on well’s wall,

v = 0, ! = 0 at r = R. [4]

Compared with the Navier–Stokes equation, the extra boundary
condition ! = 0 is imposed due to the higher-order differential
operator (∇4) in Eq. 3. We solved Eq. 3with the above boundary
conditions in two dimensions by the pseudospectral method; see
Methods.
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Fig. 1. Transitions from a stabilized vortex to reversing vortices and a four-vortex state. 3D schematics (A) and side view (B) of the experimental setup. (C)
Typical vorticity profiles of a single stabilized vortex (R = 44.6 μm), reversing vortices (R = 46.7 μm), a four-vortex state (R = 48.8 μm), and a turbulent state
(R = 49.5 μm, SI Appendix, Fig. S5 and Supplementary Note 1G). Vorticity field ! is overlaid on the experimental snapshots. The color scales of the vorticity fields
in all panels are identical and are indicated by the color bar in (D) (Movies S2–S5). (D) Experimental snapshot overlaid with the instantaneous vorticity field.
Wells with the same radius are arranged vertically, with the radius increasing from Left to Right. All the 119 wells within this image out of ∼400 wells within the
whole field of view (SI Appendix, Fig. S1 and Movie S1) were used for analysis; see SI Appendix, Supplementary Note 1E and Fig. S3 for the selection criteria. (E and
F ) Time series of spins for the wells with the radii of 44.6 μm (E) and 46.7 μm (F ), respectively. The instantaneous velocity and vorticity fields are shown below
the time series, with the colors of the rectangle corresponding to the time points highlighted by colored circles in the time series (Movies S2, S3, S6, and S7). (G)
Antiphase relation of mode amplitudes mexp

1 and mexp
2 of the four-vortex state at R = 48.8 μm. The instantaneous vorticity fields are shown on the right of the

time series, with the colors of the rectangle corresponding to the time points highlighted by colored circles in the time series; see SI Appendix, Supplementary
Note 4 and Movies S4 and S8.

Our simulations successfully reproduced the entire sequence
of transitions observed in experiments, Fig. 3A and Movies S11–
S17. We have found a single stable vortex for small radii. As the
radius increases, the vortex becomes destabilized via infinite pe-
riod bifurcation with hysteresis and yields a periodically reversing
two-vortex state; see Fig. 3 B and C. It was demonstrated by the
time series of the spin variable; see Fig. 3B. The infinite period
bifurcation scenario (36) is consistent with the dependence of
the correlation time in the experiment, Fig. 2C, which gradually
decreases with the increase of the radius. Further increasing the
radius, the reversing two-vortex state transforms into a pulsating
four-vortex configuration, similarly to the experiment, Fig. 3D.

Weakly Nonlinear Analysis. We examined the linear stability of
Eq. 3 around v = 0, yielding ∂t! = a! − (1 + ∇2)2!. Its
solution is of the form ! =

∑
∞

−∞
exp(�nt)!n,

!n = (Gn+Jn(kn+r) + Gn−Jn(kn−r)) exp(in�), [5]

where �n are the growth rates of the corresponding azimuthal
modes, Gn± are constants, Jn are the Bessel functions, kn± =√

1±
√
a− �n. Applying the boundary conditions to !n and

solving the characteristic equation (SI Appendix, Supplementary
Note 4), one finds the growth rates �n vs. radius R. The
results are shown in Fig. 4A. For small enough R, all �n
are negative, so that no vortex is excited, similarly to our
experimental observation of noncoherent, random motion of
individual bacteria for small wells. For R ' 4.2, �0 becomes
positive, corresponding to the onset of the steady-state vortical
motion observed in computational modeling and experiment;
see SI Appendix, Fig. S11B for quantitative agreement between
the numerical and analytical solutions. Then, with the gradual
increase in R, higher rotational modes become unstable. We
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A B
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Fig. 2. Characterization of vortex states. (A) Time-averaged velocity v (blue)
and vorticity! (red) profiles of a stabilized vortex shown in Fig. 1E. The vertical
dashed line corresponds to the radius detected from the image analysis.
Note that both velocity and vorticity penetrate beyond the well radius, due
to the finite size of the PIV interrogation box and the application of Gaussian
filtering; see SI Appendix, Supplementary Note 1I. The dashed lines are fits to
the analytical solutions, Eq. 5, for tangential velocity v� (blue) and vorticity
! (red) fields. (B) Spin probability density function for the reversing vortex
state shown in Fig. 1F. (C) A scatter plot of the spin correlation time and
the well radii detected from the image analysis. The red line represents the
moving median of the scatter plot. The horizontal dashed line corresponds
to the experimental duration, 150 s; see SI Appendix, Supplementary Note 1F
for details. (D) Fraction of CW rotations as a function of the well radius. Error
bars are the SEs.

find that vortex reversal occurs at R ≈ 5.88, when the first two
modes (n = 0,±1) are unstable, and the n = ±2 mode is still
stable but close to the threshold. This mode turns out to be
excited due to nonlinear couplings with the modes n = 0,±1,
compare Fig. 4 A and E and see SI Appendix, Supplementary
Note 4. The period of reversals diverges at the threshold
radius, consistently with the infinite period bifurcation scenario;
see SI Appendix, Fig. S10.

The radial vorticity and velocity profiles predicted by the
linear analysis, Eq. 5, are in excellent agreement with the
numerical solutions of Eq. 3 without any fittings, Fig. 4 B and C.
Furthermore, fitting the theoretical expression, Eq. 5, for n = 0
to experimental vorticity and velocity profiles of a stable vortex
provides an excellent approximation as well; see Fig. 2A and SI
Appendix, Supplementary Note 1I.

Next, we approximate the solution to Eq. 3 as a sum of the
three lowest azimuthal modes with n = 0,±1,±2,

! = C(t)!0(r)+ [A1(t)ei�!1(r)+A2(t)e2i�!2(r)+ c.c.] [6]

Here, !0,!1,!2 are the eigenfunctions obtained from linear
stability analysis. For definiteness, the eigenmodes are normalized
by their kinetic energy; see SI Appendix, Supplementary Note 4
and Eqs. S35 and S36. C(t), A1(t), A2(t) are slowly varying
amplitudes that are derived from the corresponding orthogonality
leading to a set of normal form Eqs. 7–9; see Methods.

Eqs. 7–9 faithfully reproduce the numerical results from Eq. 3
without further approximation; see Fig. 4. Specifically, for small
radii, Eqs. 7–9 reproduce a stable vortex solution as shown
in Fig. 3A. Then, with the increase in R, the infinite period
bifurcation to a limit cycle is faithfully captured. Furthermore,
even the details of the time dependence of each azimuthal mode
closely agree with those of the numerical solutions of Eq. 3; see
Fig. 4D and SI Appendix, Fig. S11 C and D. In the reversing
vortex state, displayed in Fig. 4E, all three amplitudes C, A1, A2
are nonzero; see Movie S18. With the further increase in R,
a transition from a reversing state to a pulsating four-vortex
solution occurs; see Fig. 4F and Movie S19. Here, the zero mode,
n = 0, is suppressed, and the first and second modes A1, A2
pulsate in antiphase. As shown in Fig. 1G, this antiphase relation
was indeed observed experimentally, further demonstrating the
quantitative agreements among the experimental, numerical, and
analytical results. The normal form analysis indicates that the
transition to vortex reversals and other time-dependent states is a
result of resonant nonlinear interaction among the three lowest
azimuthal modes. This behavior only exists for sufficiently large
values of the nonlinear advection term �v · ∇! in Eq. 3, which

A

C D

B

Fig. 3. Computational modeling using the TTSHE. (A) Vorticity profiles obtained in the numerical simulations. Typical snapshots of a single stabilized vortex
(R = 5.2, Movie S11), periodically reversing two-vortex state (R = 5.6, Movie S12), a pulsating four-vortex state (R = 6.4, Movie S13), and a turbulent state
(R = 7.6, Movie S14) are shown. The color bar in all panels is the same. (B) Time series of the spin for the reversing two-vortex state (R = 5.35, Movie S15).
The instantaneous vorticity fields are shown as Insets, with the colors of the rectangle corresponding to the time points highlighted by colored circles in the
time series. For computational convenience, instead of using the spin defined in Eq. 1, we plot the amplitude C of the zeroth azimuthal mode defined in Eq. 6,
because C is proportional to the spin (SI Appendix, Supplementary Note 4). (C) Azimuthal mode decomposition of the instantaneous vorticity field for the reversing
two-vortex state shown in the Middle panel of (A) (R = 5.6, Movie S16), which is defined as

∫
!(r, �)d� /2� for n = 0 and

∫
e−in�!(r, �)d� /2�+ c.c. otherwise. (D)

Snapshots of the pulsating four-vortex state (R = 6.2, Movie S17).
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D E F

B C

Fig. 4. Analytical results. (A) Growth rates �n vs. radius R for n = 0,1,2. (B and C) Comparison of velocity profiles for the azimuthal modes with n = 0,1,2
obtained from the linear theory (solid curves, R = 5.9), Eq. 5, and the TTSHE simulations (dashed curves, R = 5.4). For the simulations, instantaneous profiles
are plotted. The radius for the linear theory used in this comparison was roughly estimated by taking into account the leakage due to damping (Methods and
SI Appendix, Fig. S11). The vertical black dashed line represents R = 5.4 used for the simulations. (D) Comparison of trajectories in 3D phase space obtained by
the solution of Eqs. 7–9 and the TTSHE. (E and F ) Amplitudes C, A1 , A2 vs. time obtained from Eqs. 7–9 for R = 5.9 (E) and R = 7.0 (F ); see Movies S18 and S19.

controls the resonant three-mode interaction. No limit cycles
were found for � / 3.75.

Validating Equations of Motion. The use of the TTSHE was
validated through regression analysis of our experimental data; see
SI Appendix, Supplementary Note 2 for details. Similar approaches
were used in refs. 37 and 38. In addition to the TTSHE, we
tested another model for bacterial turbulence, the Nikolaevskiy
equation, which includes ∇6v term but no cubic nonlinearity
|v|2v nor linear term v (39–41). The TTSHE outperformed the
Nikolaevskiy equation in terms of the residuals, justifying our
numerical and theoretical approaches; see SI Appendix, Figs. S7–
S9 and Tables S1–S3. The regression for the two-vortex reversing
state shown in Fig. 1F yields �dim = 1.69 ± 0.38 for the
dimensional TTSHE, proving the presence of the advection
term with � > 1, larger than � = 1 for the Naiver-Stokes
equation. Transforming the TTSHE into the form of Eq. 3 with
characteristic values in the unconstrained bacterial turbulence
(velocity V ≈50 μm/s, length scale L ≈40 μm, and time scale
T ≈0.5 s) yields �nondim = VT

L �dim ≈ 4.2 in the dimensionless
TTSHE. It is consistent with our theoretical prediction of
� ' 3.75 for the onset of oscillations.

Concluding Remarks

We observed a generic route to active turbulence in confined
suspensions of swimming bacteria: a single steady vortex gives
way to a reversing vortex pair, four pulsating vortices, and
then to a well-developed spatiotemporal chaos. The fact that
the entire bifurcation sequence is reproduced by a generic
phenomenological model for active turbulence reveals the univer-
sal fundamental mechanism governing the transition: resonant
interaction of the three lowest azimuthal modes associated
with cylindrical confinement. Furthermore, the onset of the

periodic reversal relies on the finite value of the Navier–Stokes-
like advection term in the phenomenological model of active
turbulence (10, 15, 17, 42). The regression of experimental
data also reliably corroborates the presence of the advection
term with its coefficient � > 1 in the effective equation.
These findings suggest that the observed transitions should also
occur in a broad class of active self-propelled systems under
confinement. This robust mechanism is presumably responsible
for the onset of reversing edge currents numerically observed in
ref. 43 and is not sensitive to the details of boundary conditions
or geometry (42). Furthermore, the observed transitions occur in
a Newtonian fluid environment with homogeneous activity and
density. Viscoelasticity or anisotropy may only affect the details of
the transitions (33, 44, 45). The oxygen supply through the top
and bottom polydimethylsiloxane (PDMS) membranes realized
the homogeneity of the system, excluding the previously proposed
reversal mechanism driven by density gradients arising from
nonuniform oxygen supply limited to the circumference (34).
This generic mechanism is based on the three-mode resonant
interaction and should be relevant for the variety of biological
and synthetic active systems, e.g., Janus colloids (3, 4, 46).

Another intriguing aspect is the effect of chirality. Since
bacteria are chiral objects due to counterrotation of the body and
helical flagella (47–50), there could be an asymmetry between
CW/CCW rotating vortices (24). In this work, a sustained effort
was undertaken to make the upper/bottom surfaces of the wells
as identical as possible to suppress the asymmetry. While a minor
chiral shift does not affect the transition sequence, it could
introduce slightly different thresholds for the onsets of vortex
oscillations of opposite chirality.

The current experiment is unavoidably susceptible to strong
fluctuations discarded in the theoretical description. For example,
the number of bacteria within a single microscopic well is about
∼104 bacteria/well. The dynamics of such a small bacterial
population is intrinsically stochastic. Therefore, understanding

PNAS 2025 Vol. 122 No. 11 e2414446122 https://doi.org/10.1073/pnas.2414446122 5 of 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

T
O

K
Y

O
 M

E
D

IC
A

L
 L

IB
R

A
R

Y
 o

n 
M

ar
ch

 1
6,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
13

3.
11

.1
0.

14
4.

https://www.pnas.org/lookup/doi/10.1073/pnas.2414446122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2414446122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2414446122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2414446122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2414446122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2414446122#supplementary-materials


how noise affects the nature of transitions and exploring ways
to tame and control the fluctuating active dynamics would be of
interest to future studies.

Finally, the controls and rectification of vortices in con-
fined active matter open up possibilities for engineering out-
of-equilibrium systems. For instance, weak coupling between
neighboring wells may realize a “bacterial lattice clock,” in which
reversing vortex pairs synchronize and exhibit higher regularity
and persistence. The reversing or pulsating vortices may be useful
for mixing at low Reynolds numbers. Taming the fluctuations
in active systems based on the fundamental instability uncovered
in this work provides design principles for functioning active
devices, such as biosensors or microrobotic swarms for targeted
drug delivery, precision surgery, or detoxification (51, 52).

Methods

Experimental Details. Bacteria Bacillus subtilis (strain: 1085) were grown in
Terrific Broth (T9179, Sigma-Aldrich) growth medium until optical density (OD)
achieved OD600 nm ≈1. After concentrating the suspension 180-fold, it was
sandwiched between two thin PDMS membranes to facilitate sufficient oxygen
supply for sustaining high bacterial motility. The bottom PDMS membrane
was patterned with 30-μm-deep multiple microscopic wells with the radius
ranging from 44 to 51 μm with 0.5 μm increments (Fig. 1 A, B, and D and SI
Appendix, Figs. S1 and S2). To overcome systematic errors arising from different
preparations of bacterial cultures and slight density variations caused during the
confinement process, we simultaneously observed∼400 wells (19 radii,∼20
wells for each radius) in a single field of view by using an inverted microscope
equipped with a large-sensor sCMOS camera (Kinetix, Teledyne Photometrics,
3,200×3,200 pixels) and a 10×objective lens, realizing the 2.1 mm×2.1 mm
field of view (SI Appendix, Fig. S1). It allowed resolving the bacterial dynamics
very close to the transition point. We captured the movies at 50 fps for 150 s
and analyzed the bacterial velocity fields v(r, t) = (vx , vy) using the particle
image velocimetry (PIV). The duration was limited to 150 s to ensure statistical
stationarity, which is eventually spoiled by the gradual decrease in bacterial
activity. See SI Appendix, Supplementary Note 1A–D for the detailed protocols.

Computational Details. Eq. 3 was solved by the pseudospectral method in
a two-dimensional periodic 40.96 × 40.96 domain, discretized as the 8,192
× 8,192 square lattice. Spatial derivatives were handled by the fast Fourier
transform; see SI Appendix, Supplementary Note 3. Time update was performed
in the Fourier space, with the time step Δt = 0.01. To accelerate simulations,
we performed the whole computation on GPUs (NVIDIA RTX A6000 or A100).

The damping wall implemented in Eq. 3 with the kernel K(r) permits some
leakage outside of the well radius R. We calibrated R to account for the leakage
and defined the effective radius Reff , where the velocity and vorticity vanish.
Reff is calculated as the root of

∫
v�(r, �) d� (the zeroth azimuthal mode);

see SI Appendix, Fig. S11. We obtained Reff − R ≈ 0.5. The zeroth mode
amplitude C in Eq. 6 provides a convenient measure of the spin (Eq. 1) up to
a certain prefactor. For the details of the numerical mode decomposition and
related quantities, see SI Appendix, Supplementary Note 4.

Normal form Equations. Substituting Eq. 6 into Eq. 3, and implementing
the orthogonality conditions, we obtain the set of equations for amplitudes
C, A1, A2,

∂tC = �0C − c1C
3
− c2C|A1|

2
− c3C|A2|

2

− 2c4ReA2A
∗

1
2, [7]

∂tA1 = �1A1 − b1A1|A1|
2
− b2A1C

2
− b3A1|A2|

2

− b4CA2A
∗

1 + �1A1C + 
1A2A
∗

1 , [8]

∂tA2 = �2A2 − a1A2|A2|
2
− a2A2C

2
− a3A2|A1|

2

− a4CA
2
1 + �2A2C + 
2A

2
1, [9]

where�0,1,2 are the linear growth rates; other coefficients are integrals over the
nonlinearities,SIAppendix,SupplementaryNote4. All coefficients are calculated
using a Mathematica script provided as a SI Appendix.

Data, Materials, and Software Availability. All the relevant experimental
and numerical data, the MATLAB codes for analyzing the experimental data,
Python scripts for the numerical simulations of the TTSHE, and the Mathematica
code for analytical theory are deposited on Zenodo (53). Although only the
initial parts of the experimental movies were deposited due to the size limit of
the repository, the complete image sequences can be obtained by contacting
the authors at nishiguchi@phys.isct.ac.jp. The Mathematica code for analytical
theory is also included in SI Appendix.
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