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Active matter physics has been developed with various types of self-propelled particles, including
those with polar and bipolar motility and beyond. However, the bipolar motions experimentally
realized so far have been either random along the axis or periodic at intrinsic frequencies. Here we
report another kind of bipolar active particles, whose periodic bipolar self-propulsion is set externally
at a controllable frequency. We used Quincke rollers—dielectric particles suspended in a conducting
liquid driven by an electric field—under an AC electric field instead of the usually used DC field.
Reciprocating motion of a single particle at the external frequency was observed experimentally
and characterized theoretically as stable periodic motion. Experimentally, we observed not only
the reciprocating motion but also non-trivial active Brownian particle (ABP)-like persistent motion
in a long time scale. This resulted in a Lorentzian spectrum around zero frequency, which is not
accounted for by a simple extension of the conventional model of Quincke rollers to the AC field. It
was found that ABP-like motion can be reproduced by considering the top-bottom asymmetry in
the experimental system. Moreover, we found a rotational diffusion coefficient much larger than the
thermal one, as also reported in previous experiments, which may have resulted from roughness of
the electrode surface. We also found self-organized formation of small clusters, such as doublets and
triplets, and characterized cooperative motion of particles therein. The AC Quincke rollers reported
here may serve as a model experimental system of bipolar active matter, which appears to deserve
further investigations.

1. INTRODUCTION

Active matter is a class of intrinsically non-equilibrium systems, usually consisting of a collection of self-propelled
particles (SPPs) that move according to the individual polarity or axis of motility [1–4]. Characteristic features
of active matter that do not appear in equilibrium systems, such as collective motions (e.g., ordering [1, 4, 5] and
dynamic clustering [2, 6–9]) and giant number fluctuations [1, 4, 10–12], have been a target of intensive studies for
decades. These include experimental studies using systems from microscopic to macroscopic scales, and from biological
to artificial systems. Examples of artificial experimental systems are shaken rods and disks [12, 13], Janus particles
[6–9, 14–20], Quincke rollers [21–24], floating droplets [25, 26], and so on (see [2] for a review).

One of the main advantages of using artificial self-propelled particles is controllability. Typically, self-propulsion
speed can be controlled externally within some range; for example, speed of Janus particles driven by induced-charge
electrophoresis [16, 18–20] and that of Quincke rollers [21, 22] can be controlled by the strength of the electric field.
In such systems driven by an external field, active and passive states can also be switched by turning the field on
and off [23, 27, 28] or otherwise [19], leading to motions reminiscent of run-and-tumbling of E.coli. [29]. In these
cases, the motion is unidirectional, i.e., particles are self-propelled in the direction of the polarity while the field is
on. In contrast, some systems such as shaken rods [12] exhibit bipolar motion by stochastic reversal of self-propelling
direction. Together with biological examples such as Myxococcus xanthus [30] and neural progenitor cells [31], these
systems have been studied as examples of active nematics [3]. There are also examples of bipolar active particles with
periodic reversal of self-propelling direction, such as self-propelled Belousov-Zhabotinsky droplets [32], a surface-wave
driven droplet [26], and Quincke rollers under a strong DC electric field [24]. However, in all these examples, the
periodic reversal takes place at a frequency intrinsic to each system, which is therefore uncontrollable.

Here we report that Quincke rollers, driven by an AC electric field instead of the usually used DC field, constitute an
experimental system of bipolar active particles with periodic reversal of self-propelling direction at an externally set
frequency (Fig. 1). We call our system “AC Quincke rollers” afterwards to distinguish from the original DC Quincke
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FIG. 1. Schematics of a Quincke roller under a DC field (a) and an AC field (b). (a) Under a DC field, a constant polarization
is formed and inclined in steady state, leading to a constant self-propelling velocity. (b) Under an AC field, the polarization
and the velocity become time-dependent. We found periodic bipolar motility at the frequency of the external field in this case.

rollers. A DC Quincke roller consists of a dielectric sphere immersed in a conducting liquid under a constant DC
electric field E0. The particle rolls on the electrode by the Quincke effect [33] as shown in Fig. 1a. The Quincke effect
occurs under the condition that the relaxation time of ions in liquid, τl := εl/σl, is shorter than that on the surface
of the particle, τp := εp/σp. Here, εl,p is the dielectric constant of the liquid and the particle, respectively, and σl,p
is the electric conductivity of the liquid and the particle, respectively. When the electric field E0 is applied, charges
accumulate on the surface of the particle, which makes an effective polarization P antiparallel to the field (Fig. 1a).
This configuration is unstable because a small perturbation of the polarization perpendicular to the field is amplified
by the electric torque P × E0. Therefore, if this torque surpasses the viscous restitution torque, the particle starts
to rotate spontaneously. As a result, the particle rolls on the substrate electrode (Fig. 1a), leading to unidirectional
self-propelling motion in the two-dimensional plane. The direction of motion is selected by spontaneous symmetry
breaking. Note that the particle itself has no polarity without the external electric field. It is the polarization P that
determines the direction of motion (polarity), which exists only when the external field is applied. The fact that the
polarity is acquired only a posteriori under the external field is the key to realize the externally induced periodic
bipolar motion realized by our AC Quincke rollers.

In this paper, we focus on the behavior of the AC Quincke rollers in a dilute suspension. First we describe the
experimental setup (Sec. 2) and show experimental results on the motion of a single particle (Sec. 3). We found
that a single particle exhibits periodic reciprocating motion with active Brownian particle (ABP)-like persistent net
motion. Next, the theoretical description of a Quincke roller under a DC field was generalized to that under an AC
field (Sec. 4). It was found that the reciprocating motion at the frequency of the external field corresponds to a
limit cycle of the equations of motion. This supports our observation that AC Quincke rollers are a realization of
controllable SPPs with stable reciprocating motions at the frequency of the external field. The ABP-like motion was
reproduced by incorporating the asymmetry caused by the existence of the lower electrode. Then we focus on motion
of two- and three-particle clusters (doublet and triplet) which were spontaneously formed and maintained for long
periods of time (at least 100–1000 periods) (Sec. 5). Characteristic correlations in particle motions are revealed and
interpreted in terms of particle interactions. We believe that the AC Quincke rollers reported here may provide a
new perspective on active matter systems with periodic bipolar self-propulsion, through nontrivial consequences that
such time dependence brings.

2. EXPERIMENTAL SETUP AND METHODS

Quincke rollers under an AC electric field were experimentally realized as follows. Following Bricard et al. [21, 22] on
the DC Quincker rollers, we used polystyrene spherical colloids (Thermo Scientific GS0500, radius 2.5 µm) dispersed in
0.15 mol/L of AOT/hexadecane solution. As shown in Fig. 2, the suspension was sandwiched between two transparent
electrodes (glass plate coated with indium-tin oxide (ITO) film, Mitsuru Optical Co. Ltd.). The electrodes were spaced
by 30 µm thick double-sided polyethylene terephthalate tapes (NITTO, No.5603). The AC electric field was applied
by a function generator (Agilent, 33220A) through an amplifier (NF, TA-120). [34] The particles were observed
by bright-field microscopy using an inverted microscope (Olympus, IX70) with an x40 objective lens (Olympus,
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FIG. 2. Experimental setup. A suspension of polystyrene spheres including surfactant (AOT) is sandwiched between two
transparent electrodes. The particles roll on the lower substrate under an electric field, moving thereby on the quasi-two-
dimensional plane.

LUCPLFLN40X, NA 0.60) unless otherwise stipulated, and captured by a high-speed camera (Photron, Fastcam mini
AX) at 3000 fps for 300 Hz and 2500 fps for 250 Hz. The image acquisition was synchronized by the trigger signal
from the function generator. Tracking was conducted using Particle Tracker 2D/3D [35], a plugin of ImageJ. When an
AC electric field was applied, we observed approximately periodic motion after a short transient time. We therefore
conducted all measurements after waiting long enough, specifically at least 5 seconds after the start of the voltage
application. In this paper, unless otherwise stipulated, we fixed the root-mean-square amplitude and the frequency
of the AC applied voltage at 150 V and 300 Hz or 250 Hz, respectively.

3. EXPERIMENTAL RESULTS ON SINGLE AC QUINCKE ROLLERS

This section reports experimental results on single particle motion. Here we used isolated particles, or more
specifically, particles separated more than 100 µm from others. Typical trajectories of isolated particles at 300 Hz are
shown in Fig. 3a. In short time scales, the observed particles exhibited reciprocating motion at the frequency of the
external field, with some extent of randomness in the direction and amplitude of the reciprocating motion (Fig. 3a,
inset). By contrast, in time scales much longer than the reciprocation period, we observed persistent motion whose
direction changed gradually (see Videos S1 and S2 in ESI†). Using each component of the single particle velocity
v = (vx, vy), we computed the energy spectral density

Svv(f) := |v̂(f)|2, v̂(f) :=
1

N

N−1∑

k=0

v(tk)e−2πiftk , (1)

with v(t) = vx(t) or vy(t), where tk is the time at the kth video frame and N is the total frame number. The results
are shown in Fig. 3b. To reduce statistical fluctuations in a low-frequency region, we computed the power spectra in
the inset of Fig. 3b by segmenting the single whole time series into 30 segments and then averaging them. This shows
that the velocities had the periodicity at the external frequency, 300 Hz. The spectra also showed another signal in a
low-frequency region (. 10 Hz) as shown in the inset of Fig. 3b, which corresponds to the slowly changing, persistent
motion we observed. This low-frequency mode was also observed for 200Hz and 250Hz (Fig. S2, ESI†). In fact, the
spectral density in the low-frequency region is Lorentzian, which is expected from a simple one-particle model with a
sinusoidal and a nonzero constant self-propelling velocity v(t) = v0 + v1 cosωt (see Supplemental Notes, ESI†), and
also seen for the ABP [17, 36]. More precisely, the spectral density S(f) for the model with v(t) = v0 + v1 cosωt is

S(f) = v20
2Dθ

D2
θ + (2πf)2

+
v21
2

(
Dθ

D2
θ + (ω + 2πf)2

+
Dθ

D2
θ + (ω − 2πf)2

)
, (2)

where Dθ is the rotational diffusion coefficient. This coefficient was estimated at Dθ = 31.4± 0.6 s−1 (D−1θ ∼ 0.03 s)
by the Lorentzian (the first term of Eq. (2)) fitting to the average of the four spectra in the inset of Fig. 3b for
< 40 Hz; here the fitting was done with the peak value of the Lorentzian fixed at S(0). The velocities v0 and v1
were estimated at v0 = 7.3± 0.4 µm/s and v1 = 24± 8 µm/s by the peaks at 0 and 300 Hz. Note that this effective
rotational diffusion coefficient Dθ is four orders of magnitude larger than the thermal rotational diffusion coefficient
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FIG. 3. Single-particle behavior (300 Hz, 150 V). (a) Two independent trajectories (over 1091 periods = 3.639 s). The subpanels
show the positions of the particles recorded every half period for the first 10 periods. The initial positions are depicted by the
black dots. The two particles were captured simultaneously, with the distance varying in the range of 177–198 µm. (b) Energy
spectral densities. The particles 1 and 2 in the legend correspond to the red and blue trajectories in (a), respectively. The inset
shows an enlargement of a low-frequency region. To reduce statistical fluctuations at a low-frequency region, the single whole
time series was divided into 30 segments (each segment contains 36 periods), then the power spectra were averaged. The yellow

solid line shows the result of the fitting to the average of the four data by the Lorentzian spectrum v20
2Dθ

D2
θ
+(2πf)2

in Eq. (2). The

data for f < 40 Hz was used for fitting. (c) The MSDs of three isolated particles (red, blue, and green dots) and their average
(black solid line). The dashed lines are guides for eyes with the indicated slopes.

Dθ = kBT/(8πηa
3) ∼ 10−3 s−1, similarly to the case of Bricard et al. [22]. They reported D−1θ ∼ 0.31 s in the DC case.

In contrast to these Quincke experiments, such a considerable deviation between the measured rotational diffusion
coefficient of a spherical particle and the thermal value was not observed in experiments of thermally activated Janus
particles[17], which did not use an electrode. Therefore, this athermal rotational diffusion may be originated from
properties of the electrode, such as its surface roughness. To inspect this possibility, we measured surface roughness of
the ITO film by using an atomic force microscope (AFM) and discussed possible effects of quenched noise originated
from the surface roughness in the Supplemental Notes (ESI†). The origin of the DC component of the velocity will
be discussed in Sec. 4.

To characterize the dynamics of the AC Quincke rollers, we also computed their mean square displacements (MSDs):

MSD(τ) =
1

N −m
N−m∑

k=1

(x(tk+m)− x(tk))2, (3)

where τ = (m/3000) s is the lag time, and x(tk) is the particle position at time tk. The results for three isolated
particles are shown in Fig. 3c. The MSDs oscillate with the period T = (1/300) s of the applied field and grow
algebraically over a duration longer than 20T with a superdiffusive exponent 1.70±0.07 as shown by the black dashed
line in Fig. 3c. This estimate was obtained by using the data points taken at every 10 frames (1 period) in the range
T ≤ τ ≤ 20T , and the 95% confidence interval was given. We consider that this superdiffusion is associated with the
low-frequency mode that manifested itself in the long-time persistent motion. After this superdiffusive behavior, the
MSD exponent crossovers to the diffusive one. This crossover from the nearly ballistic behavior to the diffusive one is
another aspect similar to the ABP, in addition to the aforementioned Lorentzian around 0 Hz in the spectral densities
characterized by the effective rotational diffusion.
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FIG. 4. Single-particle behavior in the theoretical model (300 Hz, 150 V). (a) Time evolution of the non-dimensional polariza-

tion P̃σ‖ (red) and P̃σz (blue), and the particle velocity v (green). We set aµt
µrτMW

= 82.1 µm/s. (b) Sketch of the reciprocating

rolling mechanism of an AC Quincke roller. Note that the sign of P̃σ‖ is kept the same. (c) A trajectory of (P̃σ‖ , P̃
σ
z ) from a

transient to the limit cycle. The red line shows the periodic cycle over one period. The color gradient shows the time change.
(d) The autospectra of the polarization (top) and the velocity (bottom) from the data in (a) in the periodic state. (e) The
autospectra of the polarization (top) and the velocity (bottom) in the biased model (α = 1). (f) The positions of a particle
x(t) with no bias (α = 0) and with a bias (α = 1).

4. THEORY ON SINGLE AC QUINCKE ROLLERS

To gain insights on the single particle dynamics observed in the previous section, here we provide a theoretical
description of single AC Quincke rollers, by extending the theory for DC Quincke rollers formulated by Bricard et
al. [21]. In the DC case, the locomotion of a single Quincke roller of radius a under an electric field E(t) = E0 is
described by its angular momentum ΩΩΩ(t), which obeys the equation of motion

I
dΩΩΩ

dt
=
εl
ε0

(P×E0)− µ−1r ΩΩΩ (4)

with the rotational inertia I, the dielectric constant of vacuum ε0, and the rotational mobility µr expected to be
affected by lubrication [21, 37–40].

The polarization P(t) evolves by the following electrodynamic equation [21, 41, 42]:

dP

dt
+

1

τMW
P = −2πε0a

3

τMW
E0 + ΩΩΩ× (P− 4πε0a

3χ∞E0), (5)

with χ∞ =
εp−εl
εp+2εl

and the Maxwell-Wagner time τMW =
εp+2εl
2σl

. Since the inertia term is negligible (µrI ∼ 10−8 s�
τMW in our system), we have ΩΩΩ(t) = µr

εl
ε0

(P×E0). At this point, it is convenient [21] to recognize that P(t) consists

of the following two contributions: P(t) = Pε(t)+Pσ(t), where Pε(t) = 4πε0a
3χ∞E0 is the dielectric contribution due

to the permittivity discontinuity at the interface, and the rest Pσ(t) is due to the surface charge transport. The charge
transport contribution Pσ(t) can be further decomposed into the z-component Pσz (t) and the component parallel to
the surface, Pσ‖ (t). With this and ΩΩΩ(t) = µr

εl
ε0

(P×E0), the time evolution equations for Pσz (t) and Pσ‖ (t) read

dPσz
dt

+
1

τMW
Pσz = −4πε0a

3

τMW

(
χ∞ +

1

2

)
E0 + µr

εl
ε0
E0(Pσ‖ )2, (6)

dPσ‖
dt

+
1

τMW
Pσ‖ = −µr

εl
ε0
E0P

σ
z P

σ
‖ . (7)

For a strong enough field E0, this set of the equations has a stable fixed point corresponding to the motion at a
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constant translation velocity. It is given by

v = − εl
ε0
aµtE0P

σ
‖ , (8)

with the cross mobility coefficient µt that relates the electric torque to the translational velocity [21].
Now we generalize this formulation to deal with an oscillating electric field, E(t) = E0 cosωt. Replacing E0

in Eqs. (4) and (5) with E0 cosωt and using P(t) = Pε(t) + Pσ(t) with Pε(t) = 4πε0a
3χ∞E0 cosωt, under the

assumption that dielectric polarization takes place fast enough compared to T = 2π/ω (typical dielectric polarization
response is considered to be instantaneous, much faster than our external frequency: 300 Hz), we obtain the following
time evolution equations:

dPσz
dt

+
1

τMW
Pσz = −4πε0a

3E0

(
χ∞ + 1/2

τMW
cosωt− χ∞ω sinωt

)

+ µr
εl
ε0
E0(Pσ‖ )2 cosωt, (9)

dPσ‖
dt

+
1

τMW
Pσ‖ = −µr

εl
ε0
E0P

σ
z P

σ
‖ cosωt. (10)

The rolling velocity of the particle is

v(t) = − εl
ε0
aµtE0P

σ
‖ (t) cosωt. (11)

Now, we introduce the following non-dimensionalized quantities: t̃ := t/τMW, ω̃ := ωτMW, P̃ := P
ε0E0a3

, and A :=

µrεlE
2
0a

3τMW. The rolling velocity, along the axis of motion is

v(t) = − aµt
µrτMW

AP̃σ‖ cos ω̃t̃. (12)

Equations (9) and (10) are then rewritten as follows:

dP̃σz
dt̃

+ P̃σz = −4π
{

(χ∞ + 1/2) cos ω̃t̃− χ∞ω̃ sin ω̃t̃
}

+A(P̃σ‖ )2 cos ω̃t̃, (13)

dP̃σ‖
dt̃

+ P̃σ‖ = −AP̃σz P̃σ‖ cos ω̃t̃. (14)

We numerically solved Eqs. (13) and (14) with ω
2π = 300 Hz and τMW = 1 ms. Note that the direction of P̃σ‖ (t)

in Eq. (14) is determined by the spontaneous symmetry breaking and changes by the effective rotational diffusion.

Figure 4a displays the time evolution of P̃σ‖ (t), P̃σz (t), and v(t), from the initial condition (P̃σ‖ (0), P̃σz (0)) = (0.1, 0.1).

The polarization (P̃σ‖ , P̃
σ
z ) reaches the periodic state, in which P̃σz (t) oscillates with the period identical to that of

the external field, but P̃σ‖ (t) does so with the half period (fundamental frequency 2ω) without changing its sign. As

a result, the velocity v(t) oscillates at the period of the external field, corresponding to the reciprocating motion as
observed experimentally. This rolling mechanism of an AC Quincke roller is depicted in Fig. 4b. Physically, when the
external field is applied, as in the DC case, the component P̃σ‖ is initially developed by instability due to ionic flow

around the particle and reaches a characteristic strength. In the AC case, the field is reversed every half period and
the ionic flow is also reversed accordingly in the z-direction, but the charge distribution remains biased in such a way
that the direction (sign) of P̃σ‖ is conserved. Figure 4c shows the trajectory in (P̃σ‖ , P̃

σ
z ) space, which goes to the red

closed loop (limit cycle) after a few cycles. Trajectories from different initial conditions went to the same limit cycle

as long as the sign of P̃σ‖ (0) was positive. If P̃σ‖ (0) < 0, the limit cycle to realize was the one obtained as a mirror

image (with respect to the P̃z axis) of the limit cycle shown in Fig. 4c. This is because, if (P̃σ‖ (t), P̃σz (t)) is a solution

to Eqs. (13) and (14), (−P̃σ‖ (t), P̃σz (t)) is also a solution. In our model, this relaxation to the limit cycle and the

resulting reciprocating motion were observed in a broad range of the frequency, from the low frequency limit f → 0
up to f ∼ 1/τMW. For higher frequencies, the limit cycle does not result in reciprocating motion because P̃σ‖ (t) = 0

(see Fig. S1, ESI†).
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To compare the theory and the experimental result further, the autospectral densities of P̃σ‖ (t), P̃z(t) and v(t) in the

periodic state of the model are shown in Fig. 4d. In the model, P̃σ‖ (t) and P̃σz (t) have only even and odd harmonics

respectively. Then the velocity v(t) has only odd harmonics according to Eq. (11), as confirmed in Fig. 4d. Since the
third harmonic peak of Svv is about 1/100 of the peak at the fundamental frequency 300 Hz (Fig. 4d), it is reasonable
that we did not see the odd higher harmonics in the experiment (Fig. 3b). In contrast, unlike the experiment, Svv(f)
in the model does not show a low-frequency peak, implying that the reciprocating motion in this model does not
involve the long-time persistent motion that was observed experimentally (Sec. 3). We consider that this is because
the model does not capture the asymmetry of the surface charging rate at the upside and downside of the particle
near the electrode correctly. Zhang et al. pointed out this asymmetry and took it into account in their model, which
successfully explained the spontaneous oscillation of the Quincke roller under a strong DC field [24].

Here we introduce a biased model that incorporates the top-bottom asymmetry. For simplicity, we consider the
effect of the asymmetry by adding a constant biased term to the polarization in z-direction: Pz(t) = Pσz (t)+P εz (t)+Pαz ,
where Pαz = 4πε0E0α with a constant dimensionless value α. This modifies Eqs. (13) and (14) as follows:

dP̃σz
dt̃

+ P̃σz = −4π
{

(χ∞ + 1/2) cos ω̃t̃+ χ∞α− χ∞ω̃ sin ω̃t̃
}

+A(P̃σ‖ )2 cos ω̃t̃, (15)

dP̃σ‖
dt̃

+ P̃σ‖ = −AP̃σ‖ cos ω̃t̃(P̃σz + 4πχ∞α). (16)

Note that these equations are not equivalent to the case with a nonzero DC electric field E(t) = E0 cosωt+ E1 even
formally. There is no DC component in the r.h.s. of Eqs. (15) and (16), but the DC component appears due to
nonlinearity of the equations. Another note is that the steady solution of these equations in the DC limit (ω → 0)
just results in the shift of the stable fix point from that of Eqs. (9) and (10). The modified equations (Eqs. (15) and

(16)) indicate that both P̃σ‖ and P̃σz can be neither odd nor even functions. It means that P̃σ‖ has a nonzero odd

component which generates even components in the velocity. The autospectra of the biased model with α = 1 are
shown in Fig. 4e. The polarization and velocity have both even and odd peaks. Figure 4f shows the positions of a
particle x(t) for the models with no bias (α = 0) showing no net motion and a bias (α = 0) showing a net motion.
Because there is a nonzero DC component of the velocity in the biased model, the reciprocating motion accompanies
net motion. Although this model does not involve the rotational diffusion, the existence of DC component of velocity
leads to the Lorentzian by considering the athermal rotational coefficient which we discussed in Sec. 3. Therefore, the
ABP-like long-time persistent motion we observed experimentally (Sec. 3) is accounted for by the asymmetry due to
the electrode.

5. MULTI-PARTICLE BEHAVIOR

Besides single-particle motion, we also observed formation of clusters of multiple particles, which were then main-
tained over 100–1000 periods or longer in our dilute system (see Video S3, ESI†). To confirm the cluster formation,
we first check spatial distribution of particles in a wider field of view (1031.2 µm square region) using a x10 objective
lens (Olympus, UPlanFL10X, NA0.30) and at 250 Hz. We measure the radial distribution function

g(r) =
1

Np(Np − 1)

∑

i6=j
δ(|xij | − r), (17)

where Np is the number of the particles in the field of view, and xij := xi − xj with xi being the position of the ith
particle. Then we evaluate the correlation integral C(R) [43],

C(R) =

∫ R

0

g(r)dr (18)

and compare with that of randomly placed particles, generated numerically by the uniform distribution. As shown in
Fig. 5a, in the uniformly random case, C(R) increases with a power law RD with D = 2 in the two-dimensional case
[43]. By contrast, the experimental result differs significantly. The number of pairs with short interparticle distance
is significantly larger, indicating the formation of clusters. Based on this result, we consider that a pair of particles
forms a cluster if the interparticle distance is shorter than rth = 35 µm (black dotted line in Fig. 5a, chosen in such
a way that C(R) for R < rth is markedly different from that of the uniformly random case). Using this threshold, we
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FIG. 5. Dynamic clustering and bound states of doublets and triplets. (a) Correlation integral C(R) for the experiment (250 Hz,
blue) and for the numerically generated, randomly distributed particles (red). We used low-magnification (x10 objective lens)
time-lapse images, taken at an interval of 100T to ensure statistical independence between images. The time-averaged number
of particles was Np ' 52. Error bars are the standard errors from 10 slices. In simulations, the same number of particles were
randomly placed in a box of the same size (1031.2 µm square), and average is taken over 10000 realizations. Error bars are the
standard errors from those realizations. The vertical dotted line indicates R = rth = 35 µm. (b) Cluster size distribution for
the experiment (250 Hz, blue) and for the numerically generated random particles (red). Same data as (a) are used both for
the experiment and for the random case. (c) The MSDs of isolated particles, and the MSDs of the centroids of the particles
forming doublets and triplets: MSDc(τ). The averages over a few samples are shown. The number of samples was three for
isolated particles, two for doublets (300 Hz), one for triplet (300 Hz), three for doublets (250 Hz), and one for triplet (250 Hz).
(d) The MSRD of the particle pairs forming doublets and triplets (solid line): MSRD(τ). For the triplets, averages of MSRD(τ)
over all pairs i, j = 1, 2, 3 are shown. Sample average was also taken, as in (c). The dashed gray line is MSRD(τ) for a particle
pair that initially formed a doublet, but collapsed during the observation time. The dashed black lines show MSRD(τ) between
a single particle and one of the particles forming a doublet, which join during the observation time to form a triplet (see
Video S12, ESI†). From the same set of the three particles, MSRD(τ) between the two particles that constituted the doublet
at the beginning is shown by the dashed red line.

obtain the cluster size distribution (the number of clusters of size n, evaluated by the freud library [44]). The result
is shown in Fig. 5b, with the comparison to the uniformly random case. This shows that clusters (n ≥ 2) are indeed
formed more frequently than the uncorrelated random case.

Now we focus on clusters with n = 2 (doublets; see Videos S4–S7, ESI†) and n = 3 (triplets; see Videos S8–S11,
ESI†). First, note that such clusters are dynamic: clusters are not trapped at fixed locations on the substrate, but
instead each constituent particle moves similarly to isolated particles. This is confirmed by the MSD of the centroid
of the particles forming a doublet or a triplet:

MSDc(τ) =
1

N −m
N−m∑

k=1

(xc(tk+m)− xc(tk))2, (19)

where xc := (x1 + x2)/2 for doublets and xc := (x1 + x2 + x3)/3 for triplets, and the lag time is τ = (m/3000) s for
300 Hz and τ = (m/2500) s for 250 Hz. This MSD shows oscillations in the short-time region and superdiffusion in a
relatively long time region, similarly to that of isolated particles (Fig. 5c).

Doublets and triplets are bound for some length of times. To confirm the binding, we define the mean squared
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FIG. 6. Experimental results of doublets (150 V). (a) An example of trajectories of a doublet (300 Hz, over 1091 periods
= 3.639 s). The insets show the positions recorded every half period for the first 10 periods. (b) Distance |x21(t)| and relative
angle ϕ(t) (azimuth of x21(t)) between the two particles of the doublet shown in (a). The inset shows an enlargement displaying
the first 10 periods, with different magnification rates for |x21(t)| and ϕ(t). (c) Histograms of the inner product of the self-
propelling directions of doublets, n̂1 · n̂2. Errorbars are the standard errors evaluated from two doublets (300 Hz) and three
doublets (250 Hz).

relative distance (MSRD) of the constituent particles forming a doublet or a triplet:

MSRD(τ) =
1

N −m
N−m∑

k=1

(|xij(tk+m)| − |xij(tk)|)2, (20)

which quantifies if the relative distance grows or not. The values of MSRD(τ) for such doublets and triplets that
kept r < rth during the observation time (1091T ) are shown in Fig. 5d (solid line). All show the sign of saturation,
suggesting that the particles are bound, more visibly for doublets than triplets. However, the binding state of doublets
and triplets does not last indefinitely; they can also collapse spontaneously or by an approach of other particles. The
dashed gray line in Fig. 5d shows MSRD(τ) of the doublet that collapsed during the same observation time. The
dashed black lines show MSRD(τ) between a single particle and one of the particles forming a doublet, which join
during the observation time to form a triplet (see Video S12, ESI†). These datasets of MSRD(τ) do not saturate
because the corresponding interparticle distance did not always satisfy r < rth during the observation time. In
contrast, from the same triplet that was formed by merging of a doublet and a single particle, MSRD(τ) for the
two constituent particles of this doublet saturated (dashed red line in Fig. 5d) as expected, because this pair was
bound during the entire observation time. Note that only two out of eleven clusters (doublets and triplets) showed
spontaneous collapse during our observation time (1091T ); this suggests that their life time is in the order of 103T or
so.

In the following, we characterize structure and dynamics of a doublet and a triplet (Secs. 5 A and 5 B.), compare
the motion of a constituent particle with that of an isolated particle (Sec. 5 C), and discuss the interaction between
constituent particles (Sec. 5 D).

A. Doublet

First we focus on doublets, which were at least 100 µm away from other particles. We analyzed five doublets
(two for 300 Hz and the other three for 250 Hz) which were kept bound during the whole observation time 1091T .
Trajectories of the two particles of a doublet (300 Hz) are shown in Fig. 6a, as an example. The insets show the
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FIG. 7. Experimental results of triplets (150 V). (a) An example of trajectories of the three particles forming a triplet (over
1091 periods = 3.639 s, 300 Hz). The insets show the positions recorded every half period for the first 10 periods. (b) Distance
between each pair, |xij(t)|. The inset shows an enlargement displaying the first 10 periods. (300 Hz and 250 Hz) (c) Inner
angles of the triplet, αi(t). (300 Hz and 250 Hz) (d) Histogram of the inner products of the propulsion vectors. Errorbars are
taken for three constituents of a triplet. (e) Histograms of the polar and nematic order parameters of the propulsion vectors,
in the experiment (blue: 300 Hz, orange: 250 Hz) and in the case of three random unit vectors (pink).

positions recorded every half period for the first 10 periods. Similarly to isolated particles, the doublet constituents
also exhibited short-time reciprocating behavior (at the frequency of the external field) and long-time persistent
motion (see Videos S4–S7, ESI†). Despite the persistent motion of each particle, the interparticle distance |x21| was
maintained in some range as shown in Fig. 6b, with noticeable oscillations at a few Hz in addition to the smaller ones
at the external frequency (Fig. 6b inset). The relative angle ϕ(t), defined by the azimuth of x21, also changed in time
(green curve and right axis of Fig. 6b). To characterize the correlation between the motions of the two particles, we
define the unit vector indicating the self-propelling direction over a half period, called the propulsion vector hereafter,
n̂i(tm) := ∆xi(tm)/|∆xi(tm)| with ∆xi(tm) := xi(tm+1)−xi(tm). (tm := mT/2, m = 0, 1, 2 . . . ). Figure 6c shows the
histograms of the inner product n̂1 · n̂2, indicating that the two particles in a doublet tend to align their self-propelling
directions, mostly parallel but sometimes anti-parallel. This suggests that they also tend to align their polarization
vectors Pσ‖ , according to Eq. (11) of the single-particle theory. Further discussions on the interaction will be given in

Sec. 5 D.

B. Triplet

Here we focus on triplets, which were at least 100 µm away from other particles. We analyzed two triplets (one for
300 Hz and the other for 250 Hz) which were kept bound during the whole observation time 1091T . Particle trajectories
are shown in Fig. 7a. The insets show the positions recorded every half period for the first 10 periods. Similarly
to isolated particles and doublets, the particles forming a triplet also showed short-time reciprocating behavior and
long-time persistent motion (see Videos S8–S11, ESI†). The interparticle distance |xij | of any pair i, j = 1, 2, 3 was
maintained in some range as shown in Fig. 7b. The geometric configuration was also characterized in terms of the
inner angles αi of the triangle, whose vertices are set by the positions of the three particles (see the sketch in Fig. 7c).
The result in Fig. 7c shows that the triangle tends to be obtuse most of the time. The propulsion vectors n̂i are also
defined as in the doublet case and analyzed. Figure 7d shows the histogram of the inner products n̂i ·n̂j . This indicates
that any pair of particles tends to align their self-propelling directions, mostly parallel but sometimes anti-parallel.
To further characterize the relation among three propulsion vectors, we use the following two order parameters: the
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FIG. 8. Comparison of energy spectral density among isolated single particles (red), particles forming doublets (blue: 300 Hz,
purple: 250 Hz), and particles forming triplets (green: 300 Hz, orange: 250 Hz). For each spectrum, average is taken over
all directions (vx and vy) and all constituent particles of all samples. Three isolated particles, two doublets at 300 Hz, three
doublets at 250 Hz, one triplet at 300 Hz and one triplet at 250 Hz are used. The inset shows an enlargement of a low-frequency
region. To reduce statistical fluctuations, the time series were divided into 30 segments (each segment contains 36 periods),
then the power spectra were averaged.

polar order parameter ΦP and the nematic order parameter ΦN , defined by

ΦP =

∣∣∣∣∣
1

3

3∑

k=1

eiθk

∣∣∣∣∣ , ΦN =

∣∣∣∣∣
1

3

3∑

k=1

e2iθk

∣∣∣∣∣ , (21)

where θk is the azimuth of the propulsion vector n̂k. We consider four states as shown in Fig. 7e, characterized by ΦP
and ΦN being ≤ 0.5 or > 0.5, and measured the fraction of time spent in each state for 300 Hz and 250 Hz (Fig. 7e).
For comparison, the time fraction for the case of three randomly generated unit vectors is also shown. The result in
Fig. 7e shows that the triplet tends to be in the aligned state (ΦP ,ΦN > 0.5).

C. Comparison between isolated and clustering particles

As we have seen, particles show similar short-time reciprocating motion and long-time persistent motion, regardless
of whether they form a cluster or not. We discuss similarities and dissimilarities between isolated particles and
clustering particles here. First, let us see the MSDs for isolated particles as well as the centroids of the doublets and
triplets as already shown in Fig. 5c. While all these results show oscillations in the short-time region and superdiffusion
in a relatively long time region, we also notice a few differences. First, the oscillations in the short-time region are
more prominent for the triplet, then for the doublet, and least prominent for the isolated particles. This suggests that
the particle interaction contributes to the larger amplitude of the reciprocating motion. Moreover, the time region
showing the superdiffusive exponent is shorter for the clusters than for the isolated particles. This is presumably
because of a binding effect of the clusters.

We also compare the energy spectral density (Fig. 8). Similarly to that of the isolated particles, the spectra for the
doublets and triplets also show a sharp peak at the external frequency as well as a low-frequency Lorentzian mode
(inset of Fig. 8). Besides, however, the spectra for the doublet and triplet also show the considerable second and third
harmonic peaks (600 Hz and 900 Hz for 300 Hz, 500 Hz and 750 Hz for 250 Hz, respectively) which were absent or
invisible in the isolated case. Since the third harmonic peak is theoretically expected to appear even in the isolated
case (see Sec. 4 and Fig. 4d), we consider that it became visible here because of the reduction of the background
noise in the high frequency region (see Fig. 8). This reduction of noise is possibly because the interaction increased
the stability of the dynamics of the polarization and the velocity. In contrast, the apparent second harmonic peak is
characteristic of the clustering particles; for isolated particles, it did not appear in the experiment, and is expected
to be very weak in theory even if we consider the biased single-particle model in Sec. 4. More precisely, the strength
of the second harmonic peak in this model is no more than 1/1000 of that of the fundamental frequency, so that it
is reasonable that we did not see it. Therefore, the considerable second harmonic peak is inferred to be due to the
interaction discussed in the next subsection.
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D. Discussions on the interaction between particles

Similarly to the DC case, Quincke rollers under an AC field also interact through hydrodynamic flow and electrostatic
effect. As described in Bricard et al. [21], the hydrodynamic flow generated by a roller at xj is a dipolar flow for
xij := |xij | � H, where H is the cell thickness (H = 30 µm here). In the vicinity of the particle (xij . H), aligning
flow is produced [21]. The reciprocating motion under the AC field simply makes the flow field oscillate. On the
electrostatic interaction, the parallel component of the electric field at xi induced by the polarization P(j) of particle

j, denoted by δE
(j)
‖ (xi, t), is given by [21]

δE
(j)
‖ (xi, t) =

3

2πε0x3ij

[
a

xij
P (j)
z x̂ij −

a2

x2ij
P

(j)
‖ · (5x̂ijx̂ij − I) +O(

a3

x3ij
)

]
, (22)

with x̂ij := xij/|xij | and the identity matrix I. Thus, particle i is exposed to the total electric field E0 cosωt +∑
j δE

(j)
‖ (xi, t), which should replace E0 in Eqs. (4) and (5). Since P

(j)
z and P

(j)
‖ have odd and even harmonics,

respectively (see Sec. 4 and Fig. 4d), δE
(j)
‖ (xi, t) has both of them, and so does Pσ of particle i. This accounts for

the considerable second harmonic peak observed in the energy spectral density only for clustering particles (Fig. 8).

We consider that the stable formation of clusters is also a result of such hydrodynamic and electrostatic interactions
under the AC external field. Interestingly, clustering has also been reported for DC Quincke rollers with periodic
on-off switching [23] but not under a constant DC field [21, 22]. Therefore, time-dependent propulsion and interaction
may be a key to clustering. Elucidating the clustering mechanism is an important open problem left for future studies.

6. CONCLUSION AND OUTLOOK

Our experimental investigation into Quincke rollers under an AC electric field revealed the reciprocating motion at
the frequency of the external field, accompanied by ABP-like long-time persistent motion. The single-particle theory
explained how this reciprocating motion arises as a result of oscillations of the polarization, which turned out to
have different parities between the vertical and parallel components. The ABP-like long-time persistent motion is
considered to arise by the effect of charging asymmetry at the upside and downside of the particle near the electrode.
The extreme deviation between the thermal and observed values of the rotational diffusion coefficient can be attributed
to athermal noise caused by the interplay between surface roughness of the electrodes and electrokinetic effect at the
surface of particles. We also found formation of clusters such as doublets and triplets, and characterized their structure
and dynamics. We showed that clustering results in the generation of the considerable second harmonic peak in the
energy spectral density, which we accounted for by the dipole-dipole interaction between particles.

There are a number of interesting directions to take for future studies of AC Quincke rollers. Experimentally,
it is tempting to study formation of larger clusters in denser suspension, as well as dynamical processes of cluster
formation. Studying the effect of AOT concentration, as reported by Zhang et al. [24] for strong DC fields, may also
be interesting in the AC case. The effect of AOT micelles may be incorporated in our model, in terms of position-
dependent conductivity as modeled by Zhang et al. [24]. Simulations of a collection of particles interacting through
the hydrodynamic and electrostatic interactions formulated by Bricard et al. [21], but under an AC field, are also
desired.

From broader perspectives, studies of artificial bipolar SPPs have not been as developed as those for the unidirec-
tional, polar counterparts. The system of AC Quincke rollers presented in this work may play a unique role in this
context, thanks to their regular reciprocation that takes place at the externally controlled frequency. It is known that
for some types of self-propelled Janus particles the self-propulsion velocity may be reversed by changing parameters
on the external energy source (such as the frequency of the applied voltage, the strength of the light irradiation, etc.)
[19, 45–47], but the propulsion mechanism and the particle interaction are typically very different in the reversed
state, so that symmetric reciprocal motion cannot be realized by simply switching between the normal and reversed
states back and forth. By contrast, the AC Quincke rollers studied in the present work have advantages that the
reciprocal motion is almost symmetric, owing simply to the electric field reversal. While having fundamental aspects
in common with other active matter systems, such as self-propulsion of particles and energy dissipation at multiple
scales, periodically driven active systems may serve as a new class of active matter worth exploring. We hope that
it will develop and contribute to deeper understanding of active matter and related phenomena in biology and non-
equilibrium physics, and that controllable bipolar SPPs such as AC Quincke rollers will serve as a useful tool in this
direction.
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Supplementary Note 1: Model of a single self-propelled particle
with a sinusoidal and constant velocity

Consider a particle self-propelling at speed v(t) under the effect of translational and rotational diffusion.
The translational diffusion and rotational diffusion coefficients are denoted by D and Dθ, respectively.
Let x and θ be the position and the propelling direction, respectively. The equations of motion read:

ẋ(t) = v(t)n̂(t) + ζζζ(t) (S1)

θ̇(t) = ξ(t). (S2)

Here, n̂(t) = (cos θ(t), sin θ(t)) is the propelling direction vector. The noises are white Gaussian:
〈ζi(t)ζj(t′)〉 = 4Dδ(t − t′)δij , 〈ζi(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2Dθδ(t − t′), and 〈ξ(t)〉 = 0 for arbitrary t, t′.
Here let us assume the self-propulsion velocity v(t) to be

v(t) = v0 + v1 cosωt. (S3)

We calculate the energy power spectrum of this model via the velocity autocorrelation. The velocity
autocorrelation is calculated as follows.

〈v(t1) · v(t2)〉 = v(t1)v(t2)〈n̂(t1) · n̂(t2)〉+ 4Dδ(t1 − t2)

= v(t1)v(t2)〈cos θ(t1) cos θ(t2) + sin θ(t1) sin θ(t2)〉+ 4Dδ(t1 − t2)

= v(t1)v(t2)〈cos(θ(t1)− θ(t2))〉+ 4Dδ(t1 − t2)

= v(t1)v(t2)〈cos(∆t1−t2θ)〉+ 4Dδ(t1 − t2), (S4)

where ∆τθ := θ(t + τ) − θ(t) and the time translation invariance of θ(t) is taken into account. The
probability density of ∆τθ, denoted by P (∆θ, τ), has the characteristic function that satisfies φ(s, t) :=∫∞
−∞ dθP (θ, t)eiθs = e−Dθs

2t. For τ > 0,

〈cos(∆τθ)〉 =

∫
P (θ, τ) cos θdθ

=
φ(1, τ) + φ(−1, τ)

2

= e−Dθτ . (S5)

Therefore, neglecting the translation diffusion, we obtain the following expression for the velocity
autocorrelation:

〈v(t1) · v(t2)〉 = v(t1)v(t2)e−Dθ|t1−t2|

=
[
v20 + v0v1 {cos(ωt1) + cos(ωt2)}+ v21 cos(ωt1) cos(ωt2)

]
e−Dθ|t1−t2| (S6)

which cannot be expressed as a function of (t1 − t2). In other words, 〈v(t1) · v(t2)〉 is not invariant
under time translation.
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Generally, the energy spectral density is calculated by the Fourier transformation of the velocity
autocorrelation 〈v(t) · v(t + τ)〉. In our model, however, 〈v(t) · v(t + τ)〉 cannot be expressed by a
function of τ only. Therefore, here we consider the periodically-averaged velocity correlation C(τ) :=
〈v(t) · v(t+ τ)〉, where the overline denotes averaging over a period of the external field. This is
evaluated as follows:

C(τ) =
(
v20 + v21cos(ωt) cos(ω(t+ τ))

)
e−Dθτ

=

(
v20 +

v21
2

(cos(2ωt+ ωτ) + cos(ωτ))

)
e−Dθτ

=

(
v20 +

v21
2

cos(ωτ)

)
e−Dθτ . (S7)

Then, the spectral density S(f) is obtained by Fourier transform of Eq. (S7), as follows:

S(f) = v20
2Dθ

D2
θ + (2πf)2

+
v21
2

(
Dθ

D2
θ + (ω + 2πf)2

+
Dθ

D2
θ + (ω − 2πf)2

)
, (S8)

when the translational diffusion is neglected. The translational diffusion adds a constant terms to
Eq. (S8). For low frequency f , the first term is dominant in Eq. (S8), which is Lorentzian with the
cutoff frequency f ∼ Dθ

2π .
To estimate Dθ, we consider the experimentally observed low-frequency region to be a simple

Lorentzian: the first term of Eq. (S8) v20
2Dθ

D2
θ+(2πf)2

=
2v20
Dθ
· 1

1+(2πf/Dθ)2
. The coefficient

2v20
Dθ

was

determined by the value at f = 0. By fitting the data for f < 40 Hz, we obtained Dθ ∼ 31.4± 0.6 s−1

(D−1θ ∼ 0.03 s). Note that this effective rotational diffusive coefficient Dθ is athermal, can be
originated from such as surface heterogeneity of the electrode and particles. (Cf. thermal rotational
diffusive coefficient: Dthermal

θ = kBT
8πa3η ∼ 10−3 s−1 with the room temperature T and the viscosity of

hexadecane η.)

Supplementary figures

Figure S1: Periodic states of the single-particle model for different frequencies of the external electric
field. Trajectories from initial conditions with P̃σ‖ (0) > 0 are shown, in (P̃σ‖ , P̃

σ
z ) space. For high

enough frequencies, P̃σ‖ vanishes and the particle does not reciprocate (see Eq.(10) in the main paper).
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Figure S2: Experimental results of the energy spectral density of particles forming a doublet, for
different frequencies of the external electric field. The amplitude was kept at 150 V (root-mean-
square amplitude). The motion of the particles was captured at the frame rate 10 times faster than
the external frequency (e.g., 2500 fps for 250 Hz). The highest peak of each spectrum is found at
the frequency of the external field, corresponding to the reciprocating motion of the particles. The
second harmonic peak due to the dipole-dipole interaction is also seen in all cases. Panel (b) shows an
enlargement of (a) in a low-frequency region. To reduce statistical fluctuations, the time series were
divided into 30 segments (each segment contains 36 periods), then the power spectra were averaged.
All spectra show a similar low-frequency mode.

Supplementary Note 2: Possible effects of surface roughness of
ITO electrode and its interaction with particle surface

To discuss the possibility that the athermal value of the rotational diffusion coefficient results from
surface heterogeneity of the electrode, we measured the surface roughness of the indium-tin oxide (ITO)
film on the glass substrate used in the experiments (Mitsuru Optical Co. Ltd.) with an atomic force
microscope (AFM, Bruker, Dimension FastScan Bio). The standard deviation of the height fluctuations
is 3.8 nm (Fig. S3a) . Histogram of the height fluctuations is close to a Gaussian distribution and
the power spectrum of the height fluctuations is close to a Lorentzian. From the fitting, we obtained
the characteristic wavelength to be λ ∼ 0.75 µm. External mechanical perturbations to the moving
particle on a rough substrate can be estimated from potential energy calculations. The potential energy
fluctuations calculated by assuming that the particle is moving along the ITO surface landscape are
less or of the same order of the thermal fluctuation kBT . However, surface roughness of the order of
4 nm is close to the size of Debye length of the surface double layer of the particle. This Debye length
level of roughness may cause even stronger fluctuations in the flow of charge around the particle and its
distribution, which may have a significant impact on the effective rotational diffusion of the particle.
Since the mean speed of the particles averaged over the period of the externally applied electric field is
about vm ∼ 60 µm/s and the characteristic time of the Lorentzian in Fig.3b is τ ∼ 0.032 s, the number
of fluctuation events experienced by a particle within τ is estimated by n ∼ vmτ/λ. We obtained
n ∼ 2.4. This number of fluctuation events is sufficient to cause loss of orientation information and
result in athermal rotational diffusion of the particle.
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Figure S3: Measurement of surface roughness of ITO substrate. (a) Height roughness of the ITO coat
on the glass substrate measured with an AFM (xy-area size: 10 × 10 µm2). Z-range of color-coded
image is 32.7 nm. (b) Histogram of height fluctuations. Standard deviation of the height fluctuation is
3.8 nm. (c) Radial distribution of the height fluctuation power spectrum in k-space calculated from the
two-dimensional Fourier transformation of the height fluctuations. Lorentzian fit gives a characteristic
wavenumber of 4.8 µm−1. (wavelength ∼ 0.75 µm)

Supplementary videos

• Video S1 (S1.mov): Short-time behavior of an isolated particle. The particle recipro-
cates at the external frequency (300 Hz), though it is only barely visible in the movie. The movie
is played at 0.01 times the real speed.

• Video S2 (S2.mov): Long-time behavior of an isolated particle (stroboscopic). This
movie shows long-time persistent motion of the particle. The frame acquisition rate is set to be
equal to the external frequency (300 Hz). The movie is played at 0.1 times the real speed.

• Video S3 (S3.mov): A wide-field video (x10 objective) showing multiple clusters
(stroboscopic, 250 Hz). Clusters are formed and maintained longer than 1000 periods if they
do not encounter other particles. The movie is played at 0.1 times the real speed.

• Video S4 (S4.mov): Short-time behavior of a doublet (300 Hz). The two particles
reciprocate at the external frequency in a cooperative manner. The propelling directions tend to
align, but not always. The movie is played at 0.01 times the real speed.

• Video S5 (S5.mov): Long-time behavior of a doublet (stroboscopic, 300 Hz). The two
particles show persistent motions, with the interparticle distance fluctuating but kept in some
range. The movie is played at 0.1 times the real speed.

• Video S6 (S6.mov): Short-time behavior of a doublet (250 Hz). The two particles
reciprocate at the external frequency in a cooperative manner. The propelling directions tend to
align, but not always. The movie is played at 0.01 times the real speed.

• Video S7 (S7.mov): Long-time behavior of a doublet (stroboscopic, 250 Hz). The two
particles show persistent motions, with the interparticle distance fluctuating but kept in some
range. The movie is played at 0.1 times the real speed.
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• Video S8 (S8.mov): Short-time behavior of a triplet (300 Hz). The three particles
reciprocate at the external frequency (300 Hz) in a cooperative manner. The propelling directions
tend to align, but not always. The movie is played at 0.01 times the real speed.

• Video S9 (S9.mov): Long-time behavior of a triplet (stroboscopic, 300 Hz). The three
particles show persistent motions, with the interparticle distances fluctuating but kept in some
range. The movie is played at 0.1 times the real speed.

• Video S10 (S10.mov): Short-time behavior of a triplet (250 Hz). The three particles
reciprocate at the external frequency in a cooperative manner. The propelling directions tend to
align, but not always. The movie is played at 0.01 times the real speed.

• Video S11 (S11.mov): Long-time behavior of a triplet (stroboscopic, 250 Hz). The
three particles show persistent motions, with the interparticle distances fluctuating but kept in
some range. The movie is played at 0.1 times the real speed.

• Video S12 (S12.mov): Long-time behavior of a triplet formation (stroboscopic,
300 Hz). An initially isolated particle joined a doublet and formed a triplet. The shape of
the triangle formed by the three particles dynamically changes. The movie is played at 0.1 times
the real speed.
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