
PHYSICAL REVIEW E 104, 054103 (2021)

Phase-ordering kinetics in the Allen-Cahn (Model A) class: Universal aspects elucidated
by electrically induced transition in liquid crystals

Renan A. L. Almeida 1,2,3,* and Kazumasa A. Takeuchi 3,†

1Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
2Departmento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil

3Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

(Received 20 July 2021; accepted 27 September 2021; published 5 November 2021)

The two-dimensional (2D) Ising model is the statistical physics textbook example for phase transitions
and their kinetics. Quenched through the Curie point with Glauber rates, the late-time description of the
ferromagnetic domain coarsening finds its place at the scalar sector of the Allen-Cahn (or Model A) class, which
encompasses phase-ordering kinetics endowed with a nonconserved order parameter. Resisting exact results
sought for theoreticians since Lifshitz’s first account in 1962, the central quantities of 2D Model A—most scaling
exponents and correlation functions—remain known up to approximate theories whose disparate outcomes urge
experimental assessment. Here we perform such assessment based on a comprehensive study of the coarsening
of 2D twisted nematic liquid crystals whose kinetics is induced by a superfast electrical switching from a spa-
tiotemporally chaotic (disordered) state to a two-phase concurrent, equilibrium one. Tracking the dynamics via
optical microscopy, we first show the sharp evidence of well-established Model A aspects, such as the dynamic
exponent z = 2 and the dynamic scaling hypothesis, to then move forward. We confirm the Bray-Humayun
theory for Porod’s regime describing intradomain length scales of the two-point spatial correlators and show that
their nontrivial decay beyond the Porod’s scale can be captured in a free-from-parameter fashion by Gaussian
theories, namely the Ohta-Jasnow-Kawasaki (OJK) and Mazenko theories. Regarding time-related statistics, we
corroborate the aging hypothesis in Model A systems, which includes the collapse of two-time correlators into a
master curve whose format is, actually, best accounted for by a solution of the local scaling invariance theory: the
same solution that fits the 2D nonconserved Ising model correlator along with the Fisher-Huse conjecture. We
also suggest the true value for the local persistence exponent in Model A class, in disfavor of the exact outcome
for the diffusion and OJK equations. Finally, we observe a fractal morphology for persistence clusters and extract
their universal dimension. Given its accuracy and possibilities, this experimental setup may work as a prototype
to address further universality issues in the realm of nonequilibrium systems.
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I. INTRODUCTION

Since the seminal studies [1,2] by Lifshitz, Slyozov, and
Wagner on the Ostwald ripening, and those [3,4] own to
Lifshitz, Allen, and Cahn on curvature-driven domain growth,
investigations of phase ordering continue very alive as a cen-
ter of statistical physics and interdisciplinary sciences for a
myriad of natural, social, and artificial phenomena [5–11].
Over the past decade, we have witnessed solid developments
not only in traditional subjects but also in the discovery on
the pivotal roles that phase separation and domain coarsening
play in biology and artificial active matter. The traditional
road includes the continued interest on spinodal decomposi-
tion of alloys and glasses [12–14], evolving patterns of foams
[15,16], growing crystalline films [17], not to mention the
evergreen simulations of Ising (e.g., Refs. [18–22]), Potts
[23,24], and voter [25] kinetics. The second path is directed
to a quantitative understanding of emergent behaviors in bio-
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logical systems, which range from the intracellular assembly
kinetics and cellular functionalization—notably liquid-liquid
phase separations involved in the formation of membraneless
cell compartments [11,26,27]—to the segregation [28] and
phase separation [29] within unicellular (bacteria) commu-
nities, pattern formation in groups of complex multicellular
organisms [30,31], besides experiments [32–34] and theo-
retical [10] accounts for artificial active matter undergoing
motility-induced phase separation. Amid such a multidis-
ciplinary environment, the iconic and perhaps the simplest
example of ordering remains being the (kinetic) Ising model
[35,36] because of its simple conceptualization and theoretical
and numerical tractability, both of which are accompanied by
a fundamental universality that often emerge from nontrivial,
real dynamics (e.g., Refs. [28,37]).

Fascination on phase-ordering kinetics then stems from
its virtual ubiquitousness and complexity that yet bears uni-
versal aspects [5–11]. Among these, generically one finds a
dynamic scaling property that guarantees that the domain mo-
saic becomes statistically time-independent whenever lengths
are measured in the unit of a single, asymptotically emer-
gent, growing scale l (t ). Free to relax in the absence of
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quenched disorder, geometric frustration and external forces,
domains display an algebraic growth l (t ) ∼ t1/z, where z is
the universal dynamic exponent. For kinetics where the sys-
tem’s order parameter is not conserved, viz. the Model A
dynamics in the classification by Hohenberg and Halperin
[38], one has [39] z = 2 [3,4,40]. Although simulations and
experiments extensively support this dynamic scaling, rig-
orous derivations have been limited to the one-dimensional
nonconserved kinetic Ising model (1DIM) [41,42] and to the
nonconserved O(n → ∞) model [43], where n is the number
of the components of the order parameter. In the case of scalar
(n = 1), two-dimensional (2D) continuum Model A systems
quenched from a fully disordered regime to an equivalent
zero-temperature (T = 0) state, dynamic scaling with z = 2
is obtained from an exact result that relies on the assumed
convergence to the critical percolation fixed point [44]. A
similar conclusion is reached for quenches performed from
the critical state [44], for which the cluster size distribution is
exactly known [45].

Theoretically suggested [46,47], then observed in models
[48] and real systems [49] around the end of the 1970s, time-
independent forms of two-point spatial correlators remain
hitherto exactly known only for specific cases [41–43,50].
These cases do not include the scalar 2D Model A whose
approximate forms were proposed along a remarkable deal
of effort made around the 1980s [51,52] and in the 1990s
[53–57], where the Ohta-Jasnow-Kawasaki (OJK) theory [51]
and the theory of unstable growth (TUG) by Mazenko [52,53]
played the major roles [58]. Tested against discrete [59,60]
and continuum [61,62] models, both OJK and TUG functional
forms generically succeeded [63] in fitting to data. The OJK
form was tested in an notable experiment [64] back to the
1980s, although agreement was mostly confined to the short
intradomain scale ruled by the Porod’s regime [65].

On the Porod’s regime, Bray and Humayun [66] derived
exact formulas for the short-distance limit of the spatial corre-
lator (or the tail of the structure factor)—hereinafter referred
to as the Bray-Humayun amplitude—so that there is no need
to rely on approximate theories in this regime. Moreover, be-
cause the formulas were derived under minimal assumptions
on the existence of defects, the Bray-Humayun amplitude
shall be valid regardless of the conservation laws of the or-
der parameter and whether the dynamic scaling holds [66].
Despite so, to our knowledge, no experimental measurement
has turned attention to this prediction.

The memory of systems in the coarsening stages is an
additional aspect of interest because corresponding two-time
and infinitely many time statistics may also display scale
invariance [5,67,68], including aging akin to that observed
in glassy materials [69]. As revealed by Fisher and Huse
[70], the description of two-time correlators requires an
additional nonequilibrium exponent—defined in Sec. IV A,
Eq. (19)—λ(n, d ) [70,71] which is affected by the presence of
long-range order in initial conditions [72,73]. For the Model
A class, exact results for λ are known for the 1DIM [42],
the 1D noiseless time-dependent Ginzburg-Landau (TDGL)
equation [74], including for the O(n) model in terms of the
1/n expansion [71]. In the 2D scalar case, Fisher and Huse
(FH) conjectured λFH = 5/4 for the 2DIM after noting that,
when viewed as a continuum system, its dynamics shall con-

verge to the critical percolation fixed point [70]. By making
a parallel between the scaling law for the correlation length
in the percolation problem [75] and a scaling hypothesis for
the evolution of the fraction of Ising spins that has flipped
an even number of times, the FH conjecture is achieved with
the further assumptions: Spins in the random and unbiased
initial conditions shall be fully time decorrelated to their coun-
terparts in final configurations; for biased initial conditions,
the dynamics shall enhance the growth of the biased phase
[70]. The Fisher and Huse conjecture λFH = 5/4 was initially
supported by 2DIM [70,72,73] and 2D TDGL simulations
[76], but recent studies based on finite-size scaling for the very
same models suggest a value closer to the prediction by TUG
[77,78], λTUG ≈ 1.29 [79]. In parallel, the OJK theory pre-
dicts a rather different value, λOJK = 1 [80], coinciding with
the lower bound of the inequality λ � d/2 for nonconserved
dynamics [70,81]. The OJK value has not been observed so
far but for 2DIM simulations with strongly long-range inter-
actions [22]. Noting that deviations from the Z2-symmetric
dynamics must be taken into account when analyzing the two-
time correlator—otherwise strongly biasing and artificially
changing its corresponding asymptotic decay—it is important
to elucidate on the experimental support to λFH in Ref. [82] in
the light of dealing with systems that are not Z2 symmetric,
as it happens in experiments.

More fundamentally, experimental support to the dynamic
scaling according to aging hypothesis [69] is surprisingly elu-
sive for the Model A class. As consequence, functional forms
for the two-time correlator given by OJK [80], TUG [79], and
the local scale invariance (LSI) theory by Henkel [83], all lack
a test with real dynamics.

Another nontrivial facet of phase-ordering kinetics is en-
coded in their first-passage statistics [84], specifically in the
local persistence probability Q(t, t0) [67,68,85]. In the lan-
guage of the Ising model, Q(t, t0) is defined as the fraction
of spins at time t which has never flipped since a previous
time t0. By construction, it involves correlation of infinitely
many points. In the thermodynamic limit (L → ∞, followed
by t → ∞ with fixed t/t0), Q often decays as Q(t, t0) ∼
(t/t0)−θ for large t/t0 with the persistence exponent θ , which
is normally independent of z and λ [67,68]. The associated
body of knowledge was seeded in the numerical work by
Derrida et al. [86] on the 1D q-state Potts model (1DPM)
and then grew and took shape thanks to 1D-5D IM simula-
tions [87], analytical approaches for the noiseless 1D TDGL
equation [74], reaction-diffusion schemes [88,89], exact solu-
tions for 1DPM [90,91], approximations for simple diffusion
(DIF) with random initial conditions (RIC) [92,93], besides
being nurtured by experiments [94–98]. Solvability of Q in
Model A systems is constrained to 1D cases [74,90,91]. In
the scalar sector of 2D Model A, early numerics predicted
θ ≈ 0.22 [86,87] while a recent 2DIM simulation suggests
θ = 0.199(2) [99]. This value is rather discernible from the
exact θDIF = 3/16 = 0.1875 value derived from the 2D DIF-
RIC [100] and OJK theory [93], which is also faced as a
candidate value for 2D Model A. The early experiment by
Yurke, Pergellis, Majumdar, and Sire reported θ = 0.19(3)
[96], albeit precision does not allow to rule out θDIF; in this
particular case, one requires a more accurate outcome. Fur-
thermore, the fractal morphology of clusters formed by local
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persistence spins in the 2D nonconserved Ising model (2DIM)
[101–103] calls for substantiation.

A traditional experimental approach to nonconserved ki-
netics has been the twisted nematic liquid crystal (TNLC)
[64,82,96], which can be quenched through a first-order
transition between the high-temperature fluid phase and the
lower-temperature nematic phase. Not forgetting to pay due
tribute to these previous systems that aimed at measuring
dynamic scaling properties, we, however, note that the in-
exorable slow quench rate implied in the isotropic-nematic
transition and the issues of metastability, nucleation and nu-
clei growth stages, have conspired to blur comparisons with
predictions made from genuinely sudden transitions across
second-order points. It is also highly desirable to seek for
a versitle setup in which different sorts of kinetics can be
triggered.

Here, we exploit electrically driven regimes in TNLC
layers to induce a virtually instantaneous switch from a spa-
tiotemporally chaotic (disordered-like) state to an equilibrium,
two-phase competing state. Because of the sudden removal of
the driving, problems related to first-order transitions are neg-
ligible (if existent), while thermal effects are finely controlled.
In addition, this setup offers an elegant way to induce different
sorts of kinetics by transiting between nonequilibrium states.
We focus on the simplest transition type that is toward the
equilibrium, so that we assess the several aspects on 2D Model
A waiting for experimental elucidation.

We first show well-established Model A features such
as the sharp evidence of dynamic scaling with z = 2. Then
we move to assess the Bray-Humayun amplitude and test
OJK and TUG theories in length scales much larger than
the Porod’s regime. Paying attention to the asymmetry in
the twisted phases, we confirm that the two-time correlator
collapses on a master function when rescaled by the dimen-
sionless ratio of its two times, as theoretically assumed by the
aging phenomenology [69], but not experimentally confirmed
hitherto for 2D Model A systems. This master function is then
used to test the OJK, TUG, and LSI theories. We find that a
particular solution of LSI, which fits 2DIM data and assumes
the Fisher-Huse conjecture, gives the superior account for the
experiment. Although our estimate of λ, in the asymptotic
regime, agrees with both the FH and TUG values within the
uncertainty, analysis from the correlator form itself rules out
the TUG scenario from a global viewpoint. The local per-
sistence statistics is also investigated; we measure a precise
value of θ that agrees with a recent, numerically estimated
value for 2DIM but that declines the suggestion of the analytic
DIF-RIC (OJK) theory. Morphology of persistence clusters is
shown as a fractal whose dimension, we remark here to be
close to the golden ratio, is in harmony with some of the 2DIM
simulations available in the literature.

This contribution is organized as follows. Section II in-
troduces the electrohydrodynamic phenomenon of nematic
liquid crystals, the experimental setup and the protocol used to
trigger the ordering kinetics. Morphology of TNLC domains
and the shrinking rate of their interfaces are the opening
themes of Sec. III. The sequence quantifies the asymmetry
in twisted phases. Two-point spatial correlators, the growth
law, dynamic scaling and the Bray-Humayun amplitude are
addressed in Sec. III C. Comparison with OJK and TUG func-

tions closes Sec. III. Time correlation properties are studied
in Sec. IV. Two-time correlators are presented in Sec. IV A;
it covers the measurement of λ, dynamic scaling aspects, and
tests of theoretical forms. Local persistence probability and
morphology of persistence clusters are presented in Sec. IV B.
We conclude this contribution in Sec. V.

II. EXPERIMENTAL SETUP AND
ELECTRICAL SWITCHING

We exploit the electrohydrodynamic convection of ne-
matic liquid crystal [104–108] that arises when a thin layer
(typically 10 to 100 μm) of nematic liquid crystal—with neg-
ative dielectric anisotropy (ε‖ − ε⊥ < 0) [109] and positive
conductance anisotropy (σ‖ − σ⊥ > 0)—is subjected to an
electric voltage of ∼10 V or higher [110]. On increasing V ,
one observes a sequence of convective patterns [111–113] and
finally a spatiotemporally chaotic state called the dynamic
scattering mode 2 (DSM2) [114–118]. DSM2 stands out by
the presence of a high density of disclinations; fluctuations of
the director field are short-range correlated in space and time:
≈1–3 μm and 10 ms, respectively, for a 50- μm-thick layer
[111]. We use DSM2 as a disordered initial condition to study
relaxation toward the equilibrium state.

We built a capacitor of parallel glass plates coated with
indium tin oxide. The gap was set by polyester spacers of
thickness 12 μm and enclosed an empty region 16 mm ×
16 mm. Prior to assembly, a polyvinyl alcohol film was
coated over each plate and rubbed to set the direction of the
surface alignment. Rubbing directions were set to be orthog-
onal between the two plates to realize a TNLC cell [119].
The capacitor was then filled with N-4-methoxybenzylidene-
4-butylaniline (purity >98.0%, Tokyo Chem. Ind., Japan)
doped with 0.01 wt% of tetrabutylammonium bromide (Tokyo
Chem. Ind., Japan). Director field twisted along the bulk in
either left- or right-handed orientation in the cell [Fig. 1(c)].

The cell was inserted in a handmade thermocontroller
[Fig. 1(b)]; the set was placed on the stage of an inverted
microscope (IX73, Olympus, Japan). Green-filtered, circu-
larly polarized light was emitted through the cell; transmitted
images were recorded by a charge-coupled device [Fig. 1(a)].
We monitored an area of dimensions Lx × Ly = 2.9 mm ×
2.2 mm in the sample by a ×4 objective. The whole apparatus
was inserted in a thermally isolated chamber whose inner tem-
perature was kept roughly constant by a thermostat circulator.
Peltier elements in the thermocontroller were connected to a
bipolar current supply set by a proportional-integral-derivative
feedback using the signal of one of the thermistors located at
1 mm to the cell. During the experiments, we kept the cell tem-
perature at 25 ◦C with fluctuations smaller than ±1.5 mK ac-
cording to the reference thermistor. Prior to the experiments,
we also monitored the temperature at different positions near
the cell. Thermal fluctuations of thermistors not used for the
feedback control were at most ±10 mK, whilst the tempera-
ture gradient formed across the cell was a few tens of mK.

Ordering kinetics was triggered as follows. We applied
a 100 Hz, 70 V sinusoidal voltage across the cell to gen-
erate the DSM2 state. Equilibrium twist alignment of the
director field was then replaced by disordered and fluctuating
configurations. The cell was kept in DSM2 during 120 s
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FIG. 1. (a) Schematics of the experimental setup. (b) Sketch of the thermocontroller. Using a personal computer (PC), we convert the
resistance of a thermistor to the temperature and determine the current to drive the Peltier elements by a proportional-integral-derivative
operation. (c) Illustration of a TNLC cell in which the director field is represented by coloured ellipses; different colours represent the
distinct macroscopic twist orientations. Dashed line represents a domain boundary (disclination). (d) Part of a real TNLC image with domains
of opposite handedness detected by bright (φ = +1) and dark (−1) shades of gray. A dashed line is drawn (not in scale for the sake of
visualization) along the domain boundary. Acronyms: halogen lamp (HAL) and charged-coupled camera (CCD). Objects are not to scale in
panels (a)–(c).

(∼104 correlation times of the DSM2 state) before we in-
stantaneously [120] removed the electric field. From this
switching time t = 0 s onwards, the twisted boundary condi-
tions for the director field induced either left- or right-handed
twist; these twisted alignments were formed after complex
disentangling of disclination loops. We recorded the dynam-
ics at 3 Hz over 2000s with pixel size a ≈ 1.82 μm; 20
independent relaxation histories were collected. Due to the
polarization optics, twists of opposite handedness were distin-
guished in the images by darker and brighter shades of gray
[Fig. 1(d)]. We attributed to each pixel a local state variable
φ(r, t ) that took φ = −1 and +1 at the dark- and bright-gray
color pixels, respectively. Domains of the opposite handed-
ness were bordered by disclination lines [Figs. 1(c) and 1(d)]
that appeared as dark lines of thickness ξ ≈ a. Because it was
hard to fully detect disclinations out of dark-gray color pixels,
we regarded disclinations as part of the φ = −1 phase: This
is a fair approximation because ξ ≈ a and because interest
is in the scaling regime where ξ/l (t ) → 0. Nonetheless, we
warn for specific instances where the binarization effect might
play some role. Data for t � 2.33 s are neglected because the
large fraction of disclinations blurred rational detection of
domains.

III. SPATIAL SCALING AND PHASE ASYMMETRY

A. Shrinkage law

Figure 2 shows TNLC domain configurations in ordering
(see also supplemental videos 1 and 2 [121]). Configurations
at t = 2.66 s appear as a random patchwork of hundreds of
domains (or clusters) that progressively coarsen afterwards.
Initial irregular contours of domains become smoother in
time. While the total length of boundaries tends to decrease,
larger domains increase their area at the expense of smaller

shrinking ones. Around 10 clusters are left at t ≈ 150 s, but
ordering is only completed a decade later, at a finite-size
equilibration time t∗ ≈ 1.2×103 s.

To quantify shrinkage of interfaces (disclinations), we
measure the interface density ρ(t ) as the number of neighbor-
ing pairs with the opposite handedness multiplied by a/LxLy.
Based on the scaling hypothesis [5]:

ρ(t ) ∼ t−1/z. (1)

Figure 3 shows that such a decay, dictated by a slope near
1/2, occurs in the experiment for nearly two decades. The
decay is better quantified by the effective exponent, z−1

eff (t ) =
−d[ln ρ(t )]/d ln t , whose plateau for 6 s � t � 60 s indicates
the core of the algebraic regime (Fig. 3, inset). Time averaging
in this regime, or fitting Eq. (1) to the data of each realization
and averaging, we obtain:

1/z =
{

0.505(15) (effective exponent)
0.498(6) (power-law fit) . (2)

The number(s) into parentheses refers to the uncertainty
(standard deviation for the effective exponent; standard error
for power-law fit) in the last digit(s). Converting to z: z =
1.98(6) (effective exponent) and z = 2.008(22) (power-law
fit). These results are in accurate agreement with the theory
for curvature-driven interface dynamics [3,4,40], a hallmark
of the Model A systems.

B. Phase asymmetry and domain shrinkage

The twist phases in the cell are not strictly Z2 symmetric
because the rubbing method inserts a nonvanishing pretilt
angle for the director field at the anchoring surfaces [122]. The
strength of this asymmetry cannot be precisely anticipated
before the manual cell assembly, which in turn inserts a small,
≈1◦, misalignment between the top and bottom surfaces. This
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FIG. 2. Configurations of the ordering of TNLC during a relaxation toward the equilibrium. The dynamics was triggered by a virtually
instantaneous electrical switch (at t = 0 s) from a spatiotemporally chaotic called DSM2 toward the two-phase competing, equilibrium state.
Different shades of gray correspond to twists of opposite handedness in the nematic director field. See also supplemental videos 1 and 2 [121].

misalignment may also affect the symmetry balance between
the phases [123].

Asymmetry in the kinetics is captured by the “magnetiza-
tion,” M(t ) = 1 − 2A(t ), defined from the area fraction A(t )
of the φ = −1 (darker) phase [Fig. 4(a), inset]. Note that
M(t ) contains a contribution from disclinations included in
φ = −1. To remove this effect, we carried out an extra set of
20 independent experimental runs with the cell placed upside
down: By this changing, the brightness of the two competing
domains is inverted, so that the sign of φ was flipped—except
for disclinations which, keeping looking as dark-colored
pixels, remained regarded as φ = −1 after binarization. Mea-
suring the magnetization Mflip(t ) for this sign-flipped data set,
we compute M ′(t ) = [M(t ) − Mflip(t )]/2 as the disclination-
free M ′(t ) magnetization [Fig. 4(a), main panel]. The M ′(t )
reveals that the φ = −1 phase is slightly favored in the
main data set, albeit asymmetry is small; for instance,
|M(t )|, |M ′(t )| � 0.2 for t � 60 s. Time average in this inter-
val gives M = −0.17(3), which corresponds to A = 0.58(2).
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FIG. 3. Density of the interface length in time. Error bars indi-
cate one standard deviation. Dashed black line is a guide for eyes
with the slope −1/2 expected for Model A dynamics. Inset shows
the time series of the effective exponent, 1/zeff = −d[ln ρ(t )]/d ln t ,
which fluctuates around 1/2 (dashed black line) within the core of
the power-law decay, ρ(t ) ∼ t−1/2, for 6 s � t � 60 s.

Asymmetry is also seen in the shrinkage rate of domains
of phase φ surrounded by a “sea” of −φ. For curvature-driven
dynamics, the squared radius R2(t ) of a circular domain (or
“bubble”) evolves, from a reference time t0, as [4]:

R2(t ) − R2(t0) = −2DAC(t − t0) + K, (3)

where DAC is the Allen-Cahn diffusion parameter and K is
a constant. We monitored 6 independent, isolated and nearly
circular bubbles; 3 of them made of the φ = −1 favored
phase, and the remaining ones made of φ = +1. Measuring
their area and equalizing πR2(t ) to define R2(t ) for each
bubble, we accompany their squared radius in time [Fig. 4(b)].
Fitting according to Eq. (3) yields D−

AC = 117.3(17) μm2 s−1

and D+
AC = 126.0(6) μm2 s−1 for φ = −1 and +1 bubbles,

respectively. The asymmetry translates in nearly 4% of de-
viation of each diffusion constant relative to the average,

DAC = 122(4) μm2 s−1, (4)

where the number in the parentheses was set to cover the
interval [D−

AC, D+
AC].

We remind that the initial state of the experiment is DSM2,
which may provide an unbiased (or weakly biased) initial
condition because the surface anchoring of the director field is
not preserved [124] and because the bulk director is strongly
disturbed by the high density of disclinations. Thus, the ob-
served asymmetry—including the one in the earlier times not
captured in Fig. 4(a)— is likely developed along with the
kinetics instead of being set by initial conditions.

The usual presence of asymmetry in experiments demands
additional care when comparison is made with predictions
for Z2-symmetric models. As we shall see, although this a
simple task for some quantities such as the spatial correla-
tor (Sec. III C), they are subtle for, e.g., the time correlator
(Sec. III C).

C. Growth law and the Bray-Humayun amplitude

The two-point spatial correlator,

Cs(r, t ) = 〈〈φ(r′, t )φ(r′ + r, t )〉r′ 〉e, (5)

where 〈...〉r′ denotes the spatial average and 〈...〉e the ensemble
average, is shown as function of r = |r| in Fig. 5(a). The larger
the t , the slower the Cs decay because of the domain growing
size l (t ): Here set it as the length at which Cs(r, t ) = 0.2 for
|r| = l (t ). The inset of Fig. 5(a) displays the growth law with

054103-5



ALMEIDA AND TAKEUCHI PHYSICAL REVIEW E 104, 054103 (2021)

10
1

10
2

10
3

t [s]

-0.8

-0.6

-0.4

-0.2

0
M

’(
t)

10
1

10
2

10
3

t [s]

-0.8

-0.6

-0.4

-0.2

0

M
(t

)

(a)

0 25 50 75 100

t - t0 [s]

-2×10
4

-1×10
4

0

R
2 (t

) -
 R

2 (t
0) 

[μ
m

2 ]

φ = −1
φ = +1

(b)

FIG. 4. (a) “Magnetization” of the TNLC system in time with no contribution of disclinations (free from binarization effects; see text). The
inset shows the bare magnetization, M(t ); the guide line (red) marks the averaged value M ≈ −0.17 for 2.66 s � t � 60 s. In both the panels,
error bars indicate one standard deviation. (b) Evolution of the square radius R2(t ) (converted from the area) of approximately circular TNLC
domains of phase φ surrounded by a “sea” of the opposite phase. Curves with different patterns and shades of cyan circles (magenta squares)
are independent realizations for bubbles made of the slightly favored (unfavored) φ = −1 (+1) phase. The insets show snapshots of a φ = −1
bubble at two different times, where the red dashed lines is a guide for a circle of radius R(t ) at each time.

z = 2,

l (t )  Bt1/2 (ξ � l (t ) � Lsys), (6)

with a nonuniversal amplitude B discussed below.
A time-independent scaling function F (·),

Cs(r, t )  F (x) [x = |r|/l (t )], (7)

is defined when dynamic scaling holds, as it does in the
experiment within the accuracy of δCs(x, t ) ≈ 0.07 (standard
deviation) for t � 21 s and x � 3 [see Fig. 5(b)]. Moreover,
the Porod’s law [65],

Cs(r, t )  1 − αx (for x � 1), (8)

is emphasized in the inset of Fig. 5(b). The angular coefficient
α, estimated from the convergence of (1 − Cs)/x for x → 0 at
a late time [t = 21.33 s; see Fig. 5(c)], reads:

α = 0.92(9). (9)

We also remind that Bray and Humayun [66] exactly de-
rived Cs(r, t ) at r � l (t ), for n � d:

Cs(r, t )  1 + A(d, n)ρEuc(t )rn [ξ � r � l (t )], (10)

where ρEuc is the interface density measured with the Eu-
clidian metric; A(d, n) is the universal Bray-Humayun (BH)
prefactor [66]:

A(d, n) = π (n/2)−1 �(−n/2)�(d/2)�2[(n + 1)/2]

�[(n + d )/2]�(n/2)
, (11)

for odd n, where �(·) denotes the gamma function. For our
system, d = 2 and n = 1, so that A(2, 1) = −4/π .

To assess Eq. (10) in the experiment, we convert ρEuc to
ρ in the Manhattan metric [125] because this metric (the
Manhattan one) was used in Fig. 3. Thus, ρEuc = L′

Euc/LxLy

is replaced by ρ = L′
Man/LxLy, where L′

Euc(L′
Man) is the

interface length in the Euclidean (Manhattan) ruler. Noting
that L′

Man/L′
Euc = 4/π holds for isotropic space [66], Eq. (10)

becomes

Cs(r, t )  1 − A∗ρ(t )r [ξ � r � l (t )], (12)

with the BH amplitude A∗ = 1.
We test such prediction as follows. Defining C as the pref-

actor of ρ(t )  Ct−1/2 (Fig. 3), and recalling B/l (t )  t−1/2

[Eq. (6)], we insert these in Eq. (12) to obtain:

Cs(r, t )  1 − CA∗rt−1/2

= 1 − A∗BC
r

l (t )
[ξ � r � l (t )], (13)

and we identify α = A∗BC.
From the plateau in the plot of ρ(t )t1/2 versus t

[Fig. 5(d)], observed for 6 s � t � 60 s, we read C =
0.0381(11) s1/2 μm−1. Similarly from (1 − Cs)t1/2/r versus
r in Fig. 5(e), the plateau interval 0 � r � 0.5l (t ) ≈ 57 μm
for t = 21.33s—which was used in the measurement of α in
Eq. (9)—gives CA∗ = 0.0377(14) μm−1, so that we find:

A∗ = 0.99(7) (14)

in striking accordance with the BH prediction A∗ = 1 [66].
By passing, from α = A∗BC = 0.92(9) in Eq. (9) and CA∗ =
0.0377(14) μm−1 above, one has B = 24(3) μm s−1/2: a
value that describes very well the experimental growth law
[Fig. 5(a), inset].

D. Experimental test of Gaussian theories

In scalar 2D Model A, the order parameter field tends to
change discontinuously in the scaling limit when interfaces
are crossed. Because such discontinuity is hard to deal
with analytically, both OJK and TUG theories replace the
order parameter by an auxiliary field that smoothly varies
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FIG. 5. (a) Spatial two-point correlator Cs(r, t ) [Eq. (5)] versus r = |r| at different times. Data were obtained by rotational average
[averaging values of Cs(r, t ) at different r with the same r = |r|], data binning, and ensemble average. Error bars indicate one standard
deviation. Dashed line indicates Cs(r, t ) = 0.2. Inset shows the growth of l (t ), where dashed red line shows l (t ) = Bt1/2 with B = 24 μm s−1/2

estimated below Eq. (14). (b) Dynamic scaling hypothesis is confirmed from the time independence of Cs(r, t ) versus x = r/l (t ). Gray dashed
line represents the Porod law, Cs(r, t )  1 − αx, with α = 0.92(9) estimated from (c). Inset of (b) is a zoom in on the region x � 1 for
the main plot. (c) Estimation of α by reading (1 − Cs )/x for x → 0; dashed line indicates the mean value, 0.92, of the ordinates in the
range x � 0.5. (d) Plateau of the rescaled interface density ρt1/2 for 6 s � t � 60 s; dashed line indicates the mean value 0.0381 μm−1 s1/2.
(e) Plot of (1 − Cs )t1/2/r versus r from which the amplitude CA∗ is estimated in the limit r → 0. Dashed line indicates the average value
CA∗ = 0.0377 μm−1 s1/2. Legends in (b), (c), and (e) are the same as that in (a).

in the whole space. OJK does so by describing interfaces
as a collection of positions satisfying u(r, t ) = 0, where
u(r, t ) is an auxiliary field such that φ(r, t ) = sgn[u(r, t )]
[5,51]. Starting from the Allen-Cahn interface motion [4]
and relying on approximating ∇ ju∇ku/|∇u|2 ≈ δ jk/d with
j, k = 1, 2, . . . , d , OJK reaches at the diffusion equation for
u(r, t ). Assuming u(r, 0) as a Gaussian random field [126],
the form of F (·) in Eq. (7) [5,51] is [127]:

FOJK(r/t1/2) = 2

π
sin−1

[
exp

( −r2

8DOJKt

)]
, (15)

with DOJK = DAC/2 for d = 2 [51].

We test Eq. (15) in the experiment, free from fit, us-
ing DOJK = DAC/2 = 61(2) μm2 s−1 after Eq. (4). Because
Cs(r, t ) → M(t )2 for |r| → ∞ and M(t ) �= 0 in the experi-
ment [Fig. 4(a), inset], but M = 0 for OJK, comparison is
restricted to Cs(r, t ) � M(t )2. Figure 6(a) compares the OJK
form with TNLC data in the region Cs(r, t ) � M(t )2 ≈ 0.04
for t = 42.66 s, and �0.02 for shorter times. We find note-
worthy agreement not only in the initial linear decay (Porod’s
regime) but also in the interdomain length scale beyond it.
Agreement is better for larger times. We also may look at
the TNLC growth law, l (t )  Bt1/2 with B = 24(3) μm s−1/2

(Sec. III C), and compare it with the OJK outcome, l (t ) =√−8DOJK ln[sin(π/10)]t1/2 from FOJK[l (t )/t1/2] = 0.2 in
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FIG. 6. Two-point spatial correlator Cs(r, t ), Eq. (5), in the experiment (symbols) compared with the forms predicted by the OJK theory and
the TUG own to Mazenko. The TNLC data for t � 21.33 s are identical to those in Figs. 5(a) and 5(b), but the number of data points is reduced
for the sake of visibility. Error bars indicate one standard deviation. (a) Cs(r, t ) for the experiment (symbols) at several times and the OJK
theoretical form (dashed lines), Eq. (15), with DOJK = 61 μm2 s−1 obtained from the relation with the Allen-Cahn constant: DOJK = DAC/2.
The dash-dotted brown line indicates Cs = 0.04 whose value stems from the observation that Cs(r, t ) → M2(t ) for |r| → ∞ and M2(t ) �= 0 in
the experiment, while M = 0 for OJK. Thus, the comparison shall be constrained to Cs � M2(t ), which reads M2 ≈ 0.04 for t = 42.66 s and
smaller for shorter times. (b) Rescaled Cs(r, t ) in the experiment compared with both OJK (dashed black line) and TUG (dash-dotted blue and
solid turquoise lines) functions. The two TUG curves were obtained with different values of DTUG as indicated in the legend. The inset shows
the same data in the main plot, but the horizontal axis is displayed in logarithmic scale.

Eq. (15); this comparison yields DOJK = 64(18) μm2 s−1 in
compatibility with DAC/2 = 61(2) μm2 s−1.

Now we turn attention to TUG. Developed from the d-
dimensional TDGL equation, TUG introduces an auxiliary
field m(r, t ) interpreted as the shortest distance between r
and the nearby interface [128]. Assuming m(r, t ) as a Gaus-
sian field, TUG predicts that F (·) in Eq. (7) is given by
F (r/t1/2) = FTUG(g), which satisfies the following differen-
tial equation [52,53]:

d2FTUG(g)

dg2
+

[
d − 1

g
+ gμ(d )

]
dFTUG(g)

dg

+ tan

[
π

2
FTUG(g)

]
= 0. (16)

with FTUG(0) = 1, g = r/(4DTUGt )1/2, and DTUG is a con-
stant. The value μ(d ) is μ(2) ≈ 1.104 [52,53] for the case of
interest here [129].

To test TUG form, we numerically integrated Eq. (16)
by a Euler-Heuns discretization with a uniform step δg =
10−6, in d = 2, and boundary conditions FTUG(0) = 1,
dFTUG(g)

dg |(g=0) = −(2/π )1/2. After, to determine DTUG, we
rely on the Porod’s regime g � 1 of the TUG correlator
[53,54]:

FTUG(g)  1 −
[

1

DTUG2π (d − 1)

]1/2 r

t1/2
. (17)

Relating Eq. (17) with Cs(r, t )  1 − (α/B)(r/t1/2)
[from Eqs. (6) and (8)], we find DTUG = (B/α

√
2π )2 =

1/2π (CA∗)2 = 112(8) μm2 s−1.

Figure 6(b) compares the experimental data with FTUG(g)
for DTUG = 112 μm2 s−1 (the most probable value), as well
as with FOJK(r/t1/2) for DOJK = 61 μm2 s−1. For the sake
of visibility, we show only data for t = 21.33 s and 42.66 s
because they are in the core of the z = 2 scaling regime (see
Fig. 3). Figure 6(b) suggests that FOJK(r/t1/2) describes the
experiment data better than the TUG counterpart; however,
by adjusting the value of DTUG within the uncertainty, specifi-
cally by setting DTUG = 104 μm2 s−1, the form FTUG(g) can
also be made reasonably close to the data [Fig. 6(b), inset].
Thus, both the OJK and TUG theories are good descriptors
(within the statistical accuracy) for the TNLC correlator and
this includes the description of length scales larger than those
in the Porod’s regime. Unlike DOJK, DTUG does not seem
to have a trivial connection with DAC, albeit it can also be
reliably evaluated by fitting the experimental correlator to the
TUG Porod’s regime, Eq. (17), as we have done. It is overall
noteworthy that OJK performs remarkably well without such
fitting.

IV. TIME STATISTICS

A. Two-time autocorrelation

The two-time autocorrelator,

Ct (t, t0) = 〈〈φ(r, t )φ(r, t0)〉r〉e (t � t0), (18)

is anticipated [130] to decay in the coarsening stages (for most
of the cases [131]) as [5]:

Ct (t, t0)  H (t/t0), H (y) ∼ y−λ/z (y � 1), (19)
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for large t0 and t , where H (y) is a universal scaling function
and λ is the autocorrelation exponent introduced by FH [70].
As described in Sec. I, 2D Model A theories suggest: λFH =
5/4 [70], λOJK = 1 [80], and λTUG ≈ 1.2887 [79].

The scaling function H (y) in the OJK model is [5,80]:

HOJK(y) = 2

π
sin−1

{[
4y

(1 + y)2

]d/4}
. (20)

For TUG, the function HTUG(g, τ (y)), analogously
defined from the two-point spatiotemporal correlator
〈〈φ(r′ + r, t )φ(r′, t0)〉r′〉e, with g = r/(4DTUGt )1/2 and
τ (y) = (ln y)/4, satisfies the differential equation [79]:

∂HTUG[g, τ (y)]

∂τ
= 1

μ
∇2

gHTUG + 2g · ∇gHTUG

+ 1

μ
tan

(
π

2
HTUG

)
. (21)

This equation can be integrated numerically from the initial
condition HTUG(g, 0), which is just the vectorial analog of
FTUG(g) that we also numerically obtained in Eq. (16). Here,
we are interested in HTUG(y) = HTUG(0, τ (y)).

The LSI theory is based on the hypothesis that correla-
tors transform covariantly under the conformal group (that
is, under space-time scale transformations set by the dynamic
exponent z) [83]. For 2D scalar Model A, LSI theory yields
[132]:

HLSI(y) = yλ/2(y − 1)−λ�

(
y + 1

y − 1

)
, (22)

with

�(q) = E1q1−λ

[(
1 + 1

q

)3−2λ

�(λ − 1) − γ (λ − 1, E3q)

+ 1

E3q
γ (λ, E3q)

]
+ E2

[
E1−λ

3 q−λγ (λ, E3q)

+ e−E3q − 1 + 2F1(λ − 1, 1; 3 − λ; −1/q)

q

]
, (23)

where E1, E2, and E3 are constants, � is the gamma function,
γ is the lower incomplete gamma function, and 2F1 is the
hypergeometric function. Constants were determined from
2DIM simulations after a quench from the paramagnetic state
to the lower-temperature T = 0 state, with λ = λFH; they read
[133]: E1 = −0.601, E2 = 3.94, and E3 = 0.517. Hereafter,
HLSI(y) with this set is referred to as the LSI-2DIM correlator.

Before comparing experiment with theories, it is crucial
to subtract effects from a nonvanishing M(t ) in the kinetics,
otherwise, the asymptotic decay of the two-time correlator
in Eq. (18) becomes dependent on which φ = ±1 phase
equilibrates the system. Evaluating the magnetization M̂(t ) =
〈φ(r, t )〉r and the bare correlator Ĉt (t, t0) = 〈φ(r, t )φ(r, t0)〉r

for each realization, we define a modified correlator C′
t (t, t0):

C′
t (t, t0) =

〈
Ĉt (t, t0) − M̂(t )M̂(t0)

1 − M̂(t )M̂(t0)

〉
e

. (24)

This correlator satisfies C′
t (t0, t0) = 1 and C′

t (t → ∞, t0)→0,
since Ĉt (t → ∞, t0) → M̂(t )M̂(t0).

Note that C′
t (t, t0) ≈ Ct (t, t0) as long as Ĉt (t, t0) �

M̂(t )M̂(t0), which is roughly ≈0.03 for t, t0 � 60 s for in-
stance.

Figure 7(a) displays C′
t (t, t0) in the experiment for t0 =

2.66 s, 5.33 s, and 10.66 s against t (inset) and y = t/t0 (main
panel) in the double logarithmic scales. From the collapse of
the three data sets shown in the main panel, we confirm the
dynamic scaling hypothesis as prescribed in Eq. (19). Those
data are then compared with the asymptotic power law decay
Ct (t, t0) ∼ (t/t0)−λ/z with λ/z = 1/2 (OJK), = 5/8 (FH), and
≈0.644 (TUG). After the initial nonalgebraic region, the data
at intermediate times 2 � y � 10 tend to decay with a OJK-
like value prior to their crossover to a faster, asymptotic decay.
Using t0 = 2.66 s for which the asymptotic power law is most
prominent, and z = 2 shown in Eq. (2), we find

λ =
{

1.03(5) (2 � y � 10)
1.28(11) (15 � y � 75) , (25)

whose values for the asymptotic TNLC decay are compat-
ible with both the FH conjecture and TUG theory within
uncertainty (uncertainties are evaluated from the effective ex-
ponents).

Figure 7(b) compares C′
t (t, t0) in the experiment with the

OJK [Eq. (20)], TUG [Eq. (21)], and LSI-2DIM [Eq. (23)]
functions.

OJK outcome is well above the TNLC data, a result sim-
ilarly seen in tests with 2DIM simulations [133]. The TUG
form, which to our knowledge has not been confronted with
simulations or experiments, exhibits pronounced deviations
from the experiment for y � 25 while it approaches to the
collapsed correlator from below. This suggests that neither
OJK or TUG theory may perform well to describe the uni-
versal autocorrelator form in scalar, 2D Model A dynamics.
Interestingly, the experimental correlator is best accounted for
by the LSI-2DIM theory, except for y � 2 since LSI solutions
cannot describe such regime [83,133]. The nice agreement
with LSI-2DIM can also be appreciated in the log × linear
plot shown in the inset of Fig. 7(b).

In an overall view, individual theories cannot account si-
multaneously for all aspects (or regimes) of the experimental
two-time autocorrelator. Indeed, although both the FH con-
jecture and TUG theory are good descriptors for the slope of
the power-law decay, the autocorrelator functional form itself
is captured by neither TUG nor OJK. Instead, this form is
overall best accounted for by the LSI-2DIM correlator, except
for the y � 2 regime; note that LSI-2DIM incorporates the FH
assumption, which is also in harmony with our experimental
observations.

B. Local persistence

The local persistence probability Q(t, t0) is the probability
that sgn[φ(r, t̃ )] does not change during t̃ ∈ [t0, t]. It typically
shows nontrivial algebraic decay [67,68],

Q(t, t0) ∼ (t/t0)−θ (t � t0), (26)

with the persistence exponent θ , as we can here directly ap-
preciate in the experiment for several values of t0 [Fig. 8(a)].

The plot Q(t, t0) versus y = t/t0 yields an excellent
data collapse within δQ ≈ 0.04 (standard deviation) for
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FIG. 7. (a) Two-time autocorrelators C′
t (t, t0 ) [Eq. (24)] for the TNLC experiment (symbols) versus t (inset), and y = t/t0 (main panel)

according to the dynamic scaling hypothesis. The solid orange, dashed black, and dash-dotted blue lines are guides to the eyes whose slopes,
−λ/z, are set by the Fisher-Huse (−5/8), OJK (−1/2), and the theory of unstable growth (TUG; ≈ −0.644) predictions, respectively. (b) Same
TNLC data compared with forms for the following theoretical predictions: HLSI(y) [solid orange line; Eq. (23) with E1 = −0.601, E2 = 3.94,
E3 = 0.517, and λ = λFH, which is a solution of the LSI theory that describes the 2DIM correlator (see text)], HOJK(y) [dashed black line;
Eq. (20) derived from the OJK theory], and HTUG(y) [dashed-dotted blue line; Eq. (21) derived from the TUG theory]. Inset displays the same
data, but the horizontal axis is displayed in logarithmic scale. In both the panels, error bars indicate one standard deviation.

y � 102 [Fig. 8(b)]. The decay is quantified by the expo-
nent, θeff (t, t0) = −d[ln Q(t, t0)]/d (ln t ), shown in the inset
of Fig. 8(b) for t0 = 2.66 s and 5.33 s. Both of the θeff (t, t0)
curves fluctuate around their mean values for 8 � y � 50.
Averaging θeff data in this interval gives 0.1938(14) and
0.1976(27) for t0 = 2.66 s and 5.33 s, respectively. We also
evaluate θ by applying a least-squares fit individually to
Q(t, t0) data of each realization, constrained to the interval
8 � y � 50, and then ensemble averaging; the results are:
θ = 0.1941(26) and 0.199(4) for t0 = 2.66 s and 5.33 s. In-
tegrating these results, we report

θ =
{

0.196(3) (effective exponent)
0.196(4) (power-law fit) , (27)

where uncertainties include (sum up) both the uncertainty
from each estimate and the deviation between the two esti-
mates for t0 = 2.66 s and 5.33 s. We remark that these results
do not significantly change when the interval 8 < y < 60 s/t0
is used, since it corresponds to the interval t � 60 s predomi-
nantly used in Sec. III.

Results in Eq. (27) agree with systematic 2DIM out-
comes [99] [θ ≈ 0.195 and θ = 0.199(2) for free and periodic
boundary conditions, respectively], but they significantly dif-
fer from θDIF = 3/16 = 0.1875 [100] and, hence, from the
OJK theory as well [93]. This may suggest, based on a con-
crete experience, the former as the true θ for 2D Model A
systems.

To probe morphological aspects of persistence, we define
an index χ (r, t ) such that χ = 1 if sgn[φ(r, t̃ )] does not
change during t̃ ∈ [t0, t], with t0 hereafter pinned at t0 =
2.66 s, and χ = 0 otherwise. The index χ (r, t ) can only

change from 1 to 0; such change happens only when an
interface crosses the position r for the first time since t0.

Snapshots of {χ (r, t )} are presented in Fig. 9; they reveal
how a single χ = 1 cluster is progressively fragmented be-
cause of the interface motion in real space. Surviving clusters
develop ragged edges in both the internal and external con-
tours resembling fractal objects (see Supplemental Videos 3
and 4 [121]). The fractal dimension d f of this morphology is
estimated by combining the gliding-box method [134] and the
method in Ref. [135]. Here a square of side ζ glides over each
{χ (r, t )} image while counting the number of χ = 1 pixels
inside the ith box, gi, with i = 1, 2, . . . , n(r); n(r) is the total
number of distinct boxes that contain at least one χ = 1 pixel.
The mean counting is G(ζ , t ) = 〈〈gi〉n〉e, where 〈...〉n is the
average over n(r) boxes glided on a snapshot at t . For fractal
objects [135,136]:

G(ζ , t ) ∼ ζ d f (a � ζ � Lsys). (28)

In the experiment, G exhibits a crossover from fractal to
Euclidian length scales at a certain correlation length ζ ∗(t )
[Fig. 10(a)]. The fractal regime is progressively built in time
since it is confined to emerge for a � ζ � ζ ∗(t ), with a grow-
ing length, ζ ∗(t ), that starts from ζ ∗(t0) = 0. This progressive
building is captured by d f −eff (ζ , t ) = d (ln G(ζ , t ))/d (ln ζ )
[Fig. 10(b)] which shows a concave dependence with ζ and
forms a plateau around a t-dependent minimum. For ζ �
ζ ∗(t ), d f −eff crossovers to d = 2. Finite-size and finite-time
effects preclude observation of clear t-independent plateau for
ζ � ζ ∗; however, from the plateau at the minimum of d f −eff

for large times, t = 1365 s, we roughly read d f ≈ 1.65(3)
[Fig. 10(b)]. The number in the parentheses indicate one stan-
dard deviation.
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FIG. 8. (a) Local persistence probability Q(t, t0) for the ordering
kinetics of TNLC, for several reference times t0. Error bars indicate
one standard deviation. Dashed line is a guide to eyes whose absolute
value of its slope is indicated in the plot. (b) Collapse of Q when
plotted versus y = t/t0 and Eq. (26) with θ = 0.196. Legend of
symbols as shown in (a). Inset shows the effective exponent θeff (t, t0)
for t0 = 2.66 s and 5.33 s data. Dashed line indicates the mean value,
0.196, for the 8 � y � 50 interval.

Although t = 1365 s is far from the time interval where
M(t ) is constant [Fig. 4(a), inset], properties of persistence
clusters at long times are reminiscent of those in the early
dynamics: This is revealed by the inner structures of persis-
tence domains in the panel at t = 1365 s of Fig. 9, which are
mostly frozen and already present since t = 43 s. Note also
that the rough estimate 1.65(3) is consistent with the interval
d f = 1.58–1.62 reported for persistence 2DIM clusters [102].

To evaluate d f from shorter times, for which |M(t )| is small
and z = 2 is clearly identified, we appeal to the correlator Cχ ,

Cχ (r, t ) = 〈〈χ (r′, t )χ (r + r′, t )〉r′〉e

〈〈χ (r′, t )〉r′〉e
, (29)

which behaves as [102,135,137]:

Cχ ∼
{

r−η [r � ζ ∗(t )]
t−θ [r � ζ ∗(t )]

, (30)

where η is a universal exponent. At the crossover length,
Cχ ∼ (ζ ∗)−η ∼ t−θ . Thus, if ζ ∗(t ) ∼ t1/z holds [138], then
η = zθ . Because G(ζ , t ) ∼ ∫

box Cχ (r, t )dd r [135], where the
integration is carried out over a box of side ζ centered at
r = 0, integration after Eq. (30) yields:

G(ζ , t ) ∼
{
ζ d−η [a � ζ � ζ ∗(t )]
t−θ ζ d [ζ ∗(t ) � r � Lsys]

. (31)

Comparing with Eq. (28), we identify:

d f = d − θz, (32)

and, consequently, zθ � d .
Before using Eq. (32) to evaluate d f , we test Eq. (30) in the

experiment. As shown in Fig. 10(c), we detect a nearly time-
independent decay Cχ (r, t ) ∼ r−η (arguably from t = 43 s)
within a region 20 μm � r � ζ ∗(t ) that extends in time. The
exponent ηeff (r) = −d[ln Cχ (r, t )]/d (ln r) measured at t =
1365.33 s provides us with η = 0.39(4) after averaging data
for 38 μm � r � 150 μm [see left inset of Fig. 10(c)]. Note
that this value is consistent with η = 0.428(7) obtained for
persistent 2DIM clusters [102]. We also observe Cχ (r, t ) ∼
t−θ for r � ζ ∗ in the right inset of Fig. 10(c), which displays
Cχ (r, t ) at |r| = 500 μm. Finally, the assumption ζ ∗(t ) ∼ t1/2

is verified by the collapse of d f −eff (ζ , t ) [Fig. 10(d)] and
Cχ (r, t ) [Fig. 10(e)] when plotted versus ζ/t1/2 and r/t1/2,
respectively.

Deviations from collapsed forms for small lengths are due
to effects of microscopic scales, such as a and ξ .

Now we safely rely on Eq. (32) to evaluate d f . Using θ in
Eq. (27) and z in Eq. (2), we find

d f =
{

1.613(14) (effective exponent)
1.609(9) (power-law fit) , (33)

where the notes in the parentheses indicate the methods used
to evaluate 1/z and θ in Eqs. (2) and (27), respectively. Final
estimates are slightly lower than the rough estimate d f =
1.65(3) (as may be expected). More important, they nicely
agree with the interval, d f = 1.58–1.62, numerically extracted
from the 2DIM model in Ref. [102], while all of them deny a
proposed d f = 1.53(2) from Ising simulations in Ref. [103].

Altogether, experimental results in this section provide firm
evidence that the statistics of the local persistence probability
correspond to a universal feature of 2D Model A systems.
In addition, one can realize that the presence of a weak
phase asymmetry has negligible, or very small, effect on those
quantities.

V. CONCLUSIONS

We have studied the nonconserved phase-ordering kinetics
of 2D TNLC as a model experimental system to elucidate uni-
versal aspects in the Allen-Cahn (Model A) universality class.
Exploiting electrically driven hydrodynamical regimes of
liquid crystals, we triggered a genuinely sudden transition be-
tween a disordered-like, spatiotemporally chaotic state, called
DSM2, toward a two-phase competing, equilibrium one. The
sudden removal of the driving avoids the inexorable slow
quench rate of thermally induced transitions, besides it avoids
the issues of metastability, nucleation, and nuclei growth,
implied in first-order transitions. Because spatiotemporal
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FIG. 9. Configurations of the local persistence index χ (r, t ) (see text) computed in the ordering of TNLC for a reference time t0 = 2.66 s.
The black and white pixels correspond to χ = 0 (nonpersistence) and 1 (persistence), respectively. See also Supplemental Videos 3 and 4
[121].
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FIG. 10. Statistics of the local persistence in the ordering kinetics of TNLC phases. In all the panels, dash-dotted and dashed lines are guide
to eyes; the values of their slopes or ordinates are indicated in the respective plots. (a) Mean counting G(ζ , t ) of χ = 1 (persistence) pixels
found inside a square of size ζ that glides over the configurations of the persistence index χ (r, t ) (reference time t0 = 2.66 s). (b) Effective
dimension df −eff (ζ , t ) for the morphology of persistence clusters as a function of ζ . (c) Covariance Cχ (r, t ) [Eq. (29)] of the index χ versus
r = |r|. Data were obtained by rotational average (averaging over different r with the same r = |r|), data binning, and ensemble average. The
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TABLE I. Universal quantities measured in the TNLC experiment

Quantity Experiment (this work) Theory References

1/z 0.505(15), 0.498(6)a Fig. 3, Eq. (2) 1/2 Exact predictions [3,4,40]

A∗ 0.99(7) Eq. (14) 1 BH prediction [66]

λ 1.03(5) for short times (2 � y � 10) Fig. 7(a), Eq. (25) 1 OJK [80]

1.28(11) for late times (15 � y � 75) 5/4 = 1.25 FH [70]

≈1.2887 TUG [79]

θ 0.196(3), 0.196(4)b Fig. 8, Eq. (27) ≈0.195, 0.199(2)c 2DIM simulations [99]

3/16 = 0.1875 DIF-RIC [100] and OJK [93]

df 1.65(3), 1.613(14), 1.609(9)d Fig. 10 1.58–1.62 2DIM simulations [102]

1.53(2) 2DIM simulations [103]

aBoth the estimates were obtained from the decay of the interface density, ρ(t ) ∼ t1/z. The time averaged effective exponent and the least-square
fit of the power law give 0.505(15) and 0.498(6), respectively. Please see Eq. (2) and text for detail.
bThe estimate θ = 0.196(3) was obtained from the time average of the effective exponent; 0.196(4) from the least-squares fit of the power law.
See Eq. (27) and text for detail.
cThe two values θ ≈ 0.195 and 0.199(2), from Ref. [99], were obtained from simulations with free and periodic boundary conditions,
respectively.
dThe estimate df = 1.65(3) was obtained directly from Eq. (28) by using data at t = 1365 s, which is however far from the interval where M(t )
is constant and far from the core of the z = 2 scaling regime. The other values df = 1.613(14) and 1.609(9) are our final estimates obtained
through the scaling relation (32). Please see Eq. (33) and text for detail.

correlations of the director field are negligible in the
DSM2 state [111], DSM2 essentially generates random ini-
tial conditions. When electrically switched (t = 0 s) toward
equilibrium, the ensuing competition between two possible
conformations for the director field, in left- and right-
handed twists (here noted φ = ±1), resembles that between
Ising spins when quenched from the higher-temperature
(T � Tc, Tc is the critical temperature) regime to the lower-
temperature (T � Tc) phase (see Fig. 2). Nonetheless, the
experiment develops a weakly asymmetry likely along its
dynamics: This is revealed by the “magnetization” |M ′| �
0.2 �= 0, for t � 60 s [Fig. 4(a)], and by the shrinking rate
of φ = ±1 spherical domains (“bubbles”) [Fig. 4(b)]. Not-
ing the curvature-driven dynamics of disclinations (interfaces)
[Eq. (3); Fig. 4(b)], the asymmetry between the twisted
phases also manifests in the Allen-Cahn diffusion coefficients,
which take slightly different values [4% deviation from the
mean DAC = 122(4) μm2 s−1] for φ = ±1. As we discussed
throughout the study, this weak asymmetry—that is usual in
experiments [96,139]—must be taken into account when one
aims at testing theories for Z2-symmetric models.

After observing that the experiment firmly shows well-
known Model A features—such as the dynamic exponent
z = 2 [see Fig. 3; Eq. (2)] and dynamic scaling [Fig. 5(b)]—
we move forward to comprehensively elucidate aspects that
remain either controversial or not experimentally assessed yet
for 2D Model A. Main results are summarized in Tables I
and II.

From the spatial correlator at the Porod’s regime, we mea-
sured the universal amplitude A∗ (see Table I) that confirms
the long-standing Bray-Humayun theory [66].

Beyond the Porod’s regime, the correlator form is well
captured by both the OJK theory [51] and the TUG own
to Mazenko [52,53] [Fig. 6(b)]. Such conclusion emerges
from comparisons done with no free parameters: the constant
DOJK was found from its direct relation with DAC [51], which
we measured independently from the “bubble” experiments;
DTUG was determined from the functional form in the Porod’s
regime. We have seen that although the agreement between
experiment and theory is more pronounced for OJK (consid-
ering the most probable values for DOJK and DTUG), TUG
also may account for the TNLC correlator if the lower limit
for DTUG, set by its uncertainty, is used [Fig. 6(b)]. To our
knowledge, this is the first experimental evidence [140] that
theoretical spatial correlators, such as OJK and TUG, describe
experimental data in the nontrivial scale beyond the Porod’s
regime, for a curvature-driven (z = 2) system.

Regarding the time correlations, we measured the two-time
correlator after proposing its due modification to account for
the weak asymmetry in the kinetics [Eq. (24)]. These cor-
relators, C′

t (t, t0), collapse on a master curve when rescaled
by y = t/t0, thus offering evidence of dynamic scaling hy-
pothesis for 2D Model A systems as demanded by aging
phenomenology [69]; see Fig. 7. The exponent λ [Eq. (19)]
displays a crossover from an initial OJK-like value to an
asymptotic one which is compatible with both the FH

TABLE II. Universal scaling functions measured in the TNLC experiment and compared with theoretical predictions.

Scaling function Experimental result Conclusion

Spatial correlator F (g) Fig. 6 Consistent with both OJK and TUG predictions

Temporal correlator H (y) Fig. 7(b) Best described by LSI-2DIM prediction for y � 2
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conjecture and the TUG prediction (values in Table I): This
reinforces the difficult matter, witnessed by simulations, of
distinguishing between the FH and TUG predictions. Light is
shed by comparisons with the functional form itself, which
elucidate that neither OJK or TUG theory can account for
the experimental, 2D Model A, correlation function. Instead,
the LSI theory own to Henkel [83], that describes the 2DIM
correlator along with the FH conjecture [133], provides the
best description for the experiment in the regime, t/t0 � 2,
that LSI deals with [Fig. 7(b)]. These results might indicate
support to the FH conjecture from a global perspective, in
harmony with many numerical studies [22,70,72,73,76,133].
The agreement with LSI also raises up the question whether
the paradigmatic 2D Model A systems may display conformal
invariance in some stage of their kinetics [83].

We have also assessed the local persistence statistics.
Thanks to the accuracy of our data, we measure a local per-
sistence exponent θ (Fig. 8; Table I) in accordance with the
recent estimates from 2DIM [99], but in significant disagree-
ment with the candidate 2D Model A value obtained from
the diffusion equation [100] and the OJK theory [93]. This
experimentally based observation thus points out the former
as the genuine value in the 2D Model A class. Additionally,
we have observed that the mosaic of persistence clusters,
defined by the persistence index χ (r, t ), develops a fractal
morphology up to the scale of a correlation length ζ ∗(t ) ∼ t1/2

(see Fig. 9 and Fig. 10). The fractal dimension d f ≈ 1.61 of
such morphology is measured experimentally (Table I) and
substantiated as universal. Correlations among persistence
clusters respect the dynamic scaling hypothesis [Fig. 10(e)].
Interesting to note that d f ≈ 1.61 is close to the golden ratio,
φ = (1 + √

5)/2 = 1.618 . . . , although no present argument
exists for conjecturing d f = φ, so that one could obtain an
exact value for θ . This may be a matter of theoretical and
numerical exploration.

Having a versatile experimental model system in the Allen-
Cahn (Model A) class opens novel paths for experimental
investigation, too. The many interesting electroconvective pat-
terns in the liquid crystals [111–113], for instance, can be
used to assess unusual sorts of ordering kinetics by transiting
between nonequilibrium states, with the advantage of the gen-
uinely sudden electrical switching. Moreover, the independent
control on the temperature allows one to tune thermal effects
by adjusting the distance from the nematic-isotropic transition
point [110]. Such control can be particularly important for ex-
perimentally assessing the fundamental theoretical hypothesis
that, from the viewpoint of renormalization group [4,5,44], the
bath temperature merely factorizes nonuniversal amplitudes,
while it preserves universal features—scaling exponents and
correlation functions—for a subcritical dynamics. Another
appealing direction is suggested by the numerically observed
[44] self-tuning of 2D Model A systems to the critical perco-
lation fixed point [141–143], which theoretically has boosted
derivations of exact solutions for the distributions of hull
areas [44,139], perimeters [144], domain crossing probabili-
ties [145], besides proposing a generalization of the dynamic
scaling hypothesis [146,147]. Access to response functions
[73,83] is an additional and attractive avenue that calls for,
and it is in principle amenable to, experimentation.
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