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Abstract

Rod-shaped bacteria, such as Escherichia coli, commonly live forming mounded colonies. They initially grow two-dimensionally on
a surface and finally achieve three-dimensional growth. While it was recently reported that three-dimensional growth is promoted
by topological defects of winding number +1/2 in populations of motile bacteria, how cellular alignment plays a role in nonmotile
cases is largely unknown. Here, we investigate the relevance of topological defects in colony formation processes of nonmotile E. coli
populations, and found that both ±1/2 topological defects contribute to the three-dimensional growth. Analyzing the cell flow in the
bottom layer of the colony, we observe that +1/2 defects attract cells and −1/2 defects repel cells, in agreement with previous studies on
motile cells, in the initial stage of the colony growth. However, later, cells gradually flow toward −1/2 defects as well, exhibiting a sharp
contrast to the existing knowledge. By investigating three-dimensional cell orientations by confocal microscopy, we find that vertical
tilting of cells is promoted near the defects. Crucially, this leads to the emergence of a polar order in the otherwise nematic two-
dimensional cell orientation. We extend the theory of active nematics by incorporating this polar order and the vertical tilting, which
successfully explains the influx toward −1/2 defects in terms of a polarity-induced force. Our work reveals that three-dimensional
cell orientations may result in qualitative changes in properties of active nematics, especially those of topological defects, which may
be generically relevant in active matter systems driven by cellular growth instead of self-propulsion.
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Significance Statement:

Biofilms are three-dimensional dense aggregates of bacteria that cause various problems from industry to daily life. Using non-
motile growing Escherichia coli, we discovered that topological defects, i.e., locations of misalignment in cell orientation, attract
cells, and promote local 3D growth. Regarding the two types of defects labeled “±1/2,” while previous studies showed that only
+1/2 defects attract cells, we found that −1/2 defects also become attractive in growing nonmotile bacteria. We revealed that this
is realized by 3D cell tilting around defects, which leads to the emergence of a polar order and generates a polarity-induced force.
These may be characteristic of growing active matter without self-propulsion of constituent particles, with possible implications
for the morphogenesis of various cell populations and tissues.

Introduction
Numerous species of bacteria live in dense populations, which
often take the form of biofilms (1). Besides being a challenging
subject for biologists and physicists, because biofilms cause a va-
riety of problems in medicine, industry, and our daily life (2, 3),
understanding the mechanism of biofilm formation is a crucial
mission across diverse disciplines. In the early stage of biofilm
formation processes, two-dimensional colonies are first formed,
then a three-dimensional structure is eventually constructed (1).
Because mechanical interactions between cells are important at
this stage, many studies have attempted to understand structure
formation dynamics from a physical perspective (4).

In particular, rod-shaped bacteria, irrespective of whether they
are motile or not, are aligned with each other and behave like an
active nematic liquid crystal in a dense two-dimensional space

(5–13). For motile bacteria, it has recently been reported that +1/2
topological defects promote three-dimensional growth of Myxo-
coccus xanthus populations (13). Besides bacteria, it is known that
topological defects also play decisive roles in various kinds of cell
populations (14, 15), such as epithelial cells (16), neural stem cells
(17), fibroblasts (18, 19), and actin fibers in Hydra (20). However, for
growing but nonmotile bacteria, while some studies investigated
how nonmotile cells initiate three-dimensional growth (21–30),
the relevance of local cell alignment to three-dimensional growth,
in particular, that of topological defects, remains unknown.

Here, by observing colony formation processes of nonmotile Es-
cherichia coli between a coverslip and a nutrient agar pad [Fig.1(a)],
we find an indication that both +1/2 and −1/2 topological de-
fects promote three-dimensional growth of colonies. This find-
ing is put on solid ground by analyses of the two-dimensional
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Fig. 1. Morphology of three-dimensional colonies formed from numerous cells observed by end-point confocal microscopy. The confocal data were
taken 14 hours after the cells had filled the bottom plane. (a) Experimental setup. Bacterial cells were between a coverslip and a nutrient agar pad. (b) A
three-dimensional image of colonies (184.52 × 184.52 μm2), where cells were stacked three-dimensionally. The region surrounded by the red rectangle
is enlarged and displayed in the upper right side. (c) A two-dimensional cross-section showing the bottom layer. Red comets and blue trefoils indicate
+1/2 and −1/2 defects, respectively. The arms of the symbols reflect the structure of the director field as illustrated in the insets of (b). (d) Mean colony
height at the location of the defects in the bottom layer and that far from defects. At each position in the xy-plane, the height was evaluated by the
length of the profile along the z-axis whose intensity is higher than 20% of the maximum. The heights at the defect positions were extracted from all
of the hundreds of defects that were sufficiently far (>9 μm) from each other. For the colony heights far from defects, we randomly picked up 1000
points, which were sufficiently far (>9 μm) from any defect (see the experimental methods discussed in Appendix A). The error bars indicate the
standard error from the ensemble averaging. The optical resolution was about 250 nm in the vertical direction; see also Fig.S2(a) to (c) for the colony
height distributions. Here, we show the result of a single measurement (uniform colony, end-point confocal #1); see Fig.S2(e) for the result of another
biological replicate (uniform colony, end-point confocal #2), where we confirmed that the colony height was again higher at the locations of the defects.

velocity field around topological defects, which reveal that cells
are transported toward both +1/2 and −1/2 defects, albeit weakly,
implying upward growth there. Remarkably, this influx toward
both types of defects is contrary to the existing knowledge that
cells escape from −1/2 defects (5, 6, 13, 16, 17, 19), and cannot be
explained by the conventional active nematic theory. Combining
confocal observations and theoretical modeling, we find that the
three-dimensional tilting of cells is promoted around topological
defects, which can induce additional force around defects. Cru-
cially, we uncover the formation of a polar order due to three-
dimensional asymmetric tilting of cells around defects, which
turns out to be the key to theoretically account for the emergence
of the influx toward −1/2 defects.

Results
Topological defects promote three-dimensional
growth of bacterial colonies
First, we studied the relation between cell orientation and colony
structure, using nonmotile E. coli placed between a coverslip and
a nutrient agar pad [Fig.1(a); see the experimental methods dis-
cussed in Appendix A]. We put cell suspension on the coverslip so
that cells are initially distributed densely and uniformly. Then, we
cultured it for 14 hours after cells had filled the bottom plane and
observed the resulting three-dimensional colony, which consisted
of multiple layers of tilted cells, by confocal microscopy. Here, we
took only a single confocal image at this end point, to take a high-
quality image without photobleaching.

To test the relevance of cell alignment to the three-dimensional
growth, we investigated whether the presence of topological de-
fects influenced the colony height. First, we noticed that the orien-
tation of cells in the bottom layer was nearly horizontal [Fig.1(b)

and (c)], tilted only weakly [typically ∼10◦ in this end-point obser-
vation; see Fig.3(a) and descriptions thereof], and many topolog-
ical defects were observed. We also observed subsequent layers
and found that the cell orientation therein was essentially guided
by that of the bottom layer [Fig.S1(c) to (e)]. This led us to focus
on the bottom layer and regard it as a quasi-two-dimensional ac-
tive nematic system. We measured the two-dimensional orien-
tation of cells, n(R) at position R in the bottom layer, from the
image intensity using the structure tensor method [see Fig.S1(a)
and the experimental methods discussed in Appendix A). We then
detected topological defects [Figs.1(c) and S1], and measured the
colony height at the positions of the defects (see the experimental
methods discussed in Appendix A). For comparison, we also mea-
sured the colony height at randomly selected locations that are
sufficiently far from topological defects. We found that the mean
colony height is slightly higher at the positions of the defects
[Fig.1(d)], both +1/2 and −1/2, than in the regions far from the
defects. The statistical significance is confirmed by the Wilcoxon
rank-sum test (Fig.S2). For the null hypothesis that the median of
the height distribution at the positions of the defects is identical
to that far from defects, the P-value was 0.018 for the +1/2 defects
and 0.043 for the −1/2 defects. While these results were obtained
from observations of 20 separate regions in a single experiment,
the reproducibility was also confirmed by another biological repli-
cate using a different substrate and agar pad [Fig. S2(e)]. These re-
sults suggest that topological defects promote the vertical growth
of colonies, slightly but statistically significantly.

Two-dimensional velocity fields around
topological defects
To clarify the origin of the promoted three-dimensional growth,
we investigate how cells in the bottom layer were displaced near
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Fig. 2. Phase-contrast images and results of two-dimensional velocity analyses for uniform colonies formed from numerous cells observed by
phase-contrast microscopy. The time interval of the time-lapse observation was 1 min. The double sign ± corresponds to the sign of the defects. These
data were obtained by a single measurement (uniform colony, phase contrast #1), but the reproducibility was confirmed in Fig.S5 by using another
biological replicate with a different substrate and agar pad (uniform colony, phase contrast #2). (a) Phase-contrast images of cells taken at t = −20, 0,
20 min, from left to right. t = 0 is the moment when cells filled the bottom plane; see also Videos 1 and 2. The sketches on the right side illustrate how
three-dimensionally tilted cells appear in the phase-contrast images. (b and c) Velocity field v± (r) (black arrows) and its divergence (color map) around
+1/2 defects (b) and −1/2 defects (c). (d) Schematic illustration of the definition of the radial velocity v±

r (r, t). With this, the mean radial velocity is
defined by v̄±

r (r, t) ≡ 1
2π

∮
dφv±

r (r, t), which corresponds to the average of the radial components of the velocity over a circumference of radius r centered
at the defect. The sign of v̄±

r indicates the direction of net flow, including the existence of vertical growth if v̄±
r < 0. (e and f) Time evolution of the mean

radial velocity v̄±
r (r, t) around +1/2 defects (e) and −1/2 defects (f). Here, we used the velocity field averaged over 0 min ≤ t ≤ 15 min, 15 min ≤ t ≤

30 min, and 30 min ≤ t ≤ 45 min. The error bars indicate the time average of the standard error evaluated from each frame. (g) Time evolution of the
minimum of v̄±

r (r, t) in the region r < r0 = 2 μm near the defect. The moving average taken from (t − 5 min) to (t + 5 min) is shown with the
corresponding error bar. (h) Comparison of the mean radial velocity v̄±

r (r) between the experimental data (symbols) and theoretical curves based on
the conventional equation (Eq.1) (lines). The displayed experimental data (symbols) are identical to those shown in (e and f) for 15 min ≤ t ≤ 30 min
(for which the influx toward −1/2 defects was strongest). The vertical dashed lines indicate the defect core radius [see Fig.S6(a) and (b)]. The dotted
lines represent the results for ε = ε0 and an = a0

n (ε = 0.25, an/ξ0 = 0.055 μm2/min, rS = 1.2 μm; see Appendix B), which correspond to the conventional
case of extensile active nematics. The solid lines are the results for Eq. (1) with three-dimensional nematic tilting, i.e., an = a0

n cos θ±
n (r). Specifically, we

used θ±
n (r, φ) = θ∞

n + (θ0
n − θ∞

n ) exp(−r2/r2
θ ) with θ∞

n = 0.3 and θ0
n = 0.75, with the other parameters left unchanged (see Appendix B). The inset is a

close-up of the results for −1/2 defects.

topological defects. We conducted a time-lapse phase-contrast
observation of the bottom layer of cells, cultured from densely
and uniformly distributed populations as in the confocal ob-
servation (see the experimental methods discussed in Appendix
A). Cells then filled the two-dimensional plane rather homoge-

neously, without forming visible microcolonies, and after a short
while, cells started to tilt upward, almost simultaneously [Fig.2(a)
and Video 1; the appearance of a dark spot in the cell body indi-
cates the tilting of the cell, as sketched in Fig.2(a)]. Based on the
uniformity of this initial two-dimensional growth, as compared
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to the growth of a single circular colony discussed later, we shall
refer to the present case as “uniform colony” in the following. Us-
ing the images after the two-dimensional plane was filled, we de-
tected topological defects from the two-dimensional cell orienta-
tion n(R, t) of the bottom layer, where t ≥ 0 is the time elapsed
since the bottom plane was filled. The density of defects initially
increased slightly, then stayed approximately constant from t ≈
30 min [Fig.S3(a)]. As expected from the absence of cell motility,
the defects moved only a little in our system, typical displace-
ments being a few microns over the observation time [Fig.S3(b)].

We then measured the velocity field around defects by particle
image velocimetry (PIV) (see the experimental methods discussed
in Appendix A). In Fig.2(b) and (c), the arrows show the velocity
field v±(r, t) around ±1/2 defects, time-averaged over 30 min ≤ t
≤ 105 min, where r indicates the position relative to the defect
and the double sign corresponds to the sign of the defect [see also
Fig.S4(a) and (b)]. While the structure of v±(r, t) resembles those
around defects in typical extensile active nematic systems (31),
their divergence ∇ · v±(r, t) [Fig.2(b) and (c); see also Fig.S4(e)] re-
veals a distinguished character of our system: we found negative
divergence around both types of defects, not only around +1/2 de-
fects [Fig.2(b)] as previously reported for systems of motile cell
populations (5, 6, 13, 16, 17, 19), but even around −1/2 defects
[Fig.2(c)], as opposed to those earlier studies. Since negative diver-
gence indicates influx of cells, this implies that cells are moving
toward both types of defects in the bottom layer and pushed out
upward. This is consistent with the result of the confocal obser-
vation that the colony height was higher at the positions of the
±1/2 defects. To inspect the time evolution of this influx, we ex-
amined the mean radial velocity at a distance r from +1/2 or −1/2
defect, v̄±

r (r, t) ≡ 1
2π

∮
dφv±

r (r, t), where v±
r (r, t) is the radial compo-

nent of the velocity v±(r, t) at polar coordinates r = (r, φ) centered
at the defect [Fig.2(d)]. For the +1/2 defects [Fig.2(e)], we find that
v̄+

r (r) is essentially negative all the time, but the depth of the min-
imum decreased with increasing time. This may be because of
decay of the overall flow speed throughout the colony [Fig.S4(f)],
possibly due to nutrient starvation, pressure increase, and/or quo-
rum sensing. In contrast, for the −1/2 defects [Fig.2(f)], v̄−

r (r) was
initially positive for all r, but decreases near the defect and even-
tually becomes negative. To see the time-dependent influx toward
the defects more clearly, we plotted minr<r0 v̄±

r (r) with r0 = 2 μm
in Fig.2(g). While the strength of the influx toward the +1/2 defect
monotonically decreased, that toward the −1/2 defect increased
until t � 25 min. These suggest an intrinsic change in the dynam-
ics around the −1/2 defect that cannot be explained by the decay
of the overall flow speed. The reproducibility was confirmed by an
independent biological replicate (Fig.S5). Although the strength of
the influx toward −1/2 defects is weak [roughly 4 × 10−3 μm/min
lasting over 15 min; see Fig.2(f) and S5(b)], it is consistent with
the amount of the increment in the colony height we observed
[Fig.1(d)]. As it is reproducible and not understandable with the
current knowledge of active nematics, this led us to seek for a
possible mechanism of the influx toward −1/2 defects.

Theoretical analyses and relevance of
three-dimensional tilting of cells
To account for the observed influx toward −1/2 defects, we de-
veloped a theory based on two-dimensional extensile active ne-
matics, extended to incorporate characteristics of growing non-
motile colonies we observed. Following earlier studies (7, 9, 13,
17), we describe the cell alignment by the nematic order tensor
Q(r, t) ≡ S(2n ⊗ n − 1), with the scalar nematic order parameter

S(r, t), the director field n(r, t), and the identity matrix 1 (see Ap-
pendix B). As a result of cell growth along the long axis of the cell
body, interacting with nearby cells, cells exert the extensile ac-
tive stress σ = −anQ with the active stress coefficient an( > 0) even
without the motility (7, 9). This stress induces the force f = ∇ · σ

and drives the velocity field v(r, t). In the overdamped and low
Reynolds number limit, this active force is balanced by the fric-
tion originating from cell–substrate interaction, giving the follow-
ing linearized equation:

ξv = ∇ · (−anQ ), (1)

with the friction tensor ξ. We assume that the friction is
anisotropic with respect to the cell alignment: ξ = ξ0(1 − εQ ) with
the friction anisotropy parameter ε. As suggested in ref. (32),
we may reasonably assume that it is easier for E. coli cells to
slide along their longitudinal axis, hence, ε > 0. Setting Q with
the theoretical director configuration for ±1/2 defects, n±(r) =
(cos(±φ/2), sin(±φ/2)) with azimuth φ of the coordinate r, and us-
ing the experimentally determined core radius [see Appendix B
and Fig.S6(a) and (b)], we calculated the mean radial velocity v̄±

r (r)
(Supplementary Information, Section I) and display the curves in
Fig.2(h) (dotted lines). Being consistent with the literature (13, 17),
this shows influx only for +1/2 defects (v̄+

r (r) ≤ 0) and outflux only
for −1/2 defects (v̄−

r (r) ≥ 0). Therefore, to explain the experimen-
tally observed influx toward −1/2 defects, we need to extend the
existing theoretical framework described so far. At this point, it
is useful to remark that dv̄−

r
dr (0) = 0, while dv̄+

r
dr (0) < 0 [see Eq. (S7)

in Supplementary Information], so that the curve v̄−
r (r) for −1/2

defects stays near zero for small r [blue dotted line in Fig.2(h)].
Therefore, even a minor effect may be sufficient to change the
sign of v̄−

r (r) near the defects. One may consider that it might be
the density heterogeneity, in particular small voids observed at
−1/2 defects in the early stage of the process (Video 1). However,
this is unlikely to explain the observed influx, because more voids
existed at earlier times whereas the influx developed later [com-
pare Video 1 and Fig.2(g)]. We also examined the possibility that
the cell growth may generate an influx toward −1/2 defects, by
adding a growth term to the hydrodynamic equation, but this did
not yield the influx (see Supplementary Information).

Instead of the growth and the density heterogeneity, here, we
focus on the three-dimensional orientations of the cells, because
the influx toward −1/2 defects became strong when cells began
to tilt three-dimensionally [Fig.2(f) and (g) and Videos 1 and 2) de-
spite the decay of the overall flow speed. We experimentally mea-
sured the tilt angle θn of cells from the horizontal plane [see the il-
lustration in Fig.3(a)], at a late time t from the end-point confocal
data, by the structure tensor method for the three-dimensional
space, applied to the bottom layer (see the experimental methods
discussed in Appendix A). Taking average over the regions around
±1/2 defects, we obtained a field of the tilt angle, θ±

n (r) (Fig.3).
While almost all cells were already tilted (hence, θ±

n (r) > 0 every-
where) at the moment of the end-point observation, we found that
three-dimensional tilting was strongest at the core of both de-
fects [Fig.3; see also Fig.S7(a) and (b) for the results of another
biological replicate]. The peak of θ±

n (r) is well approximated by
a Gaussian function centered at the defect core plus a constant
[Fig.3(a)], and θ±

n (r) turned out to be essentially isotropic [Fig.3(b)
and (c)].

We considered that this tilting may have weakened, in our two-
dimensional description, the local active stress and the friction
anisotropy around the defects. More quantitatively, we assume
that the local active stress coefficient and the friction anisotropy
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(a) (b) (c)

Fig. 3. Results on the three-dimensional nematic tilting obtained by the end-point confocal observation. To obtain them, we first measured the
three-dimensional cell orientations by the structure tensor method and obtained the nonnegative tilt angle with respect to the xy-plane (see the
experimental methods discussed in Appendix A). We then took the ensemble average over all defects. These data were obtained by a single
measurement (uniform colony, end-point confocal #1), but the reproducibility was confirmed in Fig.S7(a) and (b) by using another biological replicate
with a different substrate and agar pad (uniform colony, end-point confocal #2). (a) Nematic tilt angle θ±

n (r) around ±1/2 defects. The results on the
x-axis, i.e., r = (x, 0), are displayed. The error bars indicate the standard error from the ensemble averaging. The two insets illustrate the definition of
the axes for +1/2 (right inset) and −1/2 (left inset) defects. (b and c) Spatial profiles of the nematic tilt angle θ±

n (r) for the +1/2 defects (b) and the −1/2
defects (c). The white rods represent the nematic director field.

are given by an(r, t) = a0
n cos θn(r, t) and ε(r, t) = ε0 cos θn(r, t), re-

spectively, with constants a0
n and ε0. Using this, we solved Eq. (1)

and found that the influx toward −1/2 defects can emerge
[Fig.2(h) blue solid line and inset; see also Fig.S6(c)] within the
reasonable range of parameter values. However, the strength of
the influx was too small to account for the experimental result
[Fig.2(h) blue symbols, to be compared with the blue solid line].
This led us to seek for another key factor for the influx toward
−1/2 defects.

Here, we propose a key mechanism for the observed influx to-
ward −1/2 defects. So far, we assumed that active force is induced
only by nematic alignment. However, when cells are tilted three-
dimensionally, the sign of the tilt angle θp may break the nematic
symmetry and make it possible to develop a polar order [Fig.4(a)].
If this happens, the violation of the nematic symmetry may re-
sult in the generation of an additional force term that is otherwise
forbidden, which needs to be included in the force balance Eq. (1).
Such a polarity-induced force is expected to be proportional to the
strength of the polar order, i.e., θp, in its lowest order, and act in the
direction of the director. In this context, it is interesting to refer to
past experiments on densely packed vibrated granular rods (33,
34), which indeed showed the formation of the polar order due
to rod tilting and the resulting horizontal transport of the rods,
driven by the polarity-induced force. This suggests that a similar
polarity-induced force may arise in our growing bacterial popula-
tions, resulting from the extensile active force of cells, if the po-
lar order is formed. Inspired by this possibility, we measured θp(r)
around both types of defects by end-point confocal microscopy.
Note that the single-cell tilt angles fluctuate largely from cell to
cell (see Videos 1 and 2), and this is why θp and θn, i.e., the signed
and unsigned averages of the tilt angles, respectively, differ. The
sign of θp is determined by choosing the direction of the head of
the nematic director n [see Fig.4(a) and Appendix A]: here, we set
n±(r) = (cos(±φ/2), sin(±φ/2)) for the director field around ±1/2
defects. Figure 4(b) displays the result on the +x-axis. This shows
nonvanishing θp(r) for both ±1/2 defects, specifically θp(r) > 0 (up-
per end oriented outward) for +1/2 defects and θp(r) < 0 (upper
end oriented inward) for −1/2 defects on the +x-axis, demon-
strating the emergence of the polar order in our growing bacterial
populations. Consequently, the above-mentioned symmetry argu-
ment predicts the polarity-induced force fp to arise, which satis-
fies fp ∝ θpn for small θp. In Fig.4(c) and (d), we show θ±

p (r)n±(r)
around ±1/2 defects, which represent the strength and the direc-

tion of the polarity-induced force fp(r). What contributes to the
mean radial velocity is its radial component f±

p,r(r), proportional to
θ±

p (r)n±
r (r), which is shown in Fig.4(e) and (f), with n±

r (r) being the
radial component of the director n±(r). These results show that,
while the polarity-induced force around +1/2 defects drives the
defects toward their comet tail, that around −1/2 defects acts in-
ward, leading to the influx toward the defects. We confirmed the
reproducibility of the main structure of the polarity-induced force
by taking a biological replicate (Fig.S7), as well as by a time-lapse
confocal observation of yet another biological replicate [Fig.S8(d)
and (e)].

To quantitatively deal with the effect of the polar order upon
the mean radial velocity, we incorporate the polarity-induced
force f p into Eq. (1). With an = a0

n cos θn and ξ = ξ0(1 − ε0 cos θnQ ),
we obtain the following equation:

ξ0(1 − ε0 cos θnQ )v = ∇ · (−a0
n cos θnQ ) + a0

pθpn. (2)

Then, we experimentally determined θn(r, t) and θp(r, t) for ±1/2
defects, by combining end-point and time-lapse confocal obser-
vations (see Appendix B for details). We are to determine three
unknown parameters, a0

nS0/ξ0, a0
p/ξ0, and ε0S0, where S0 is the

scalar nematic order parameter sufficiently far from defects. In
the leading term, ε0 appears in the form of a product with a0

nS0/ξ0

[see Supplementary Information, Eq. (S23) for example], so that
we only need to tune a0

nS0/ξ0 and a0
p/ξ0. Then, while the nematic

contribution solely could not reproduce the experimental result
as we described above, we found, remarkably, that the addition of
the polar contribution a0

p/ξ0 strengthened the influx toward −1/2
defects significantly [Fig.4(g) solid curves]. In particular, we were
able to find such values of a0

nS0/ξ0 and a0
p/ξ0 that satisfactorily

reproduced the experimental data of both v̄+
r (r) and v̄−

r (r) simul-
taneously (see the experimental methods discussed in Appendix
A). We tested this for all of the four pairs of the phase-contrast
data sets (#1 or #2; see Table A1) and the end-point confocal data
sets (#1 or #2) and found agreement of similar quality (Fig.S9).
This demonstrates that the three-dimensional tilting and re-
sulting polar order were the keys to understand the unusual
influx toward −1/2 defects we observed in our growing nonmotile
bacterial populations.
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)b()a(

(f)(e)

(g)

(d)(c)

(inward)

(outward)

(inward)

(outward)

+1/2

-1/2

Fig. 4. Results on the polar order obtained by the single end-point confocal measurement (uniform colony, end-point confocal #1) [see also Fig.S7(c) to
(g) for the results of another biological replicate (uniform colony, end-point confocal #2)] and theoretical calculations of the mean radial velocity based
on our theory with polar order. (a) Illustrations of the polar tilt angle θp and the polar director np = nθp/|θp|. By choosing the direction of the head of
the nematic director n, we can uniquely determine the sign of θp. The polar tilt angle θp takes a positive (negative) value if the cell end at the head
(tail) of the director n is lifted above the substrate. Note that θp changes its sign if n is reversed, but np remains unchanged, always pointing the
direction of the upper end of the cell. The polarity-induced force fp ∝ θpn is oriented toward np (see the experimental methods discussed in Appendix
A). In the following, we use n± = (cos(±φ/2), sin(±φ/2)) for the director field around ±1/2 defects, with azimuth φ of the coordinate r. (b) The polar tilt
angle θ±

p measured on the +x-axis of ±1/2 defects [see Fig.3(a) for the definition of the axis]. The ensemble average over all defects is shown. The error
bars indicate the standard error from the ensemble averaging. (c and d) θ±

p n±, representing the strength and direction of the polarity-induced force f±
p

around the +1/2 defect (c) and the −1/2 defect (d). This direction indicates which ends of cells are lifted up on average. (e and f) θ±
p n±

r , which is
proportional to the radial component of the polarity-induced force, f±

p,r, around the +1/2 defect (e) and the −1/2 defect (f). The negative radial
component indicates that the polarity-induced force is directed toward the defect. The black rods represent the nematic director field. The outlined
arrows illustrate the direction of the radial component of the polarity-induced force near the defect. (g) Comparison of the mean radial velocity
between the experimental data (symbols) and our theoretical curves with nematic tilting and polar order (lines) (Eq.2). The theoretical curves (lines)
use the experimental data of θp from the end-point confocal observation #1, and the direct experimental data of the mean radial velocity (symbols)
are from the phase-contrast observation #1 [those shown in Fig.2(e) and (f)]; see Fig.S9 for the results using other data sets. The shaded bands indicate
the range of uncertainty, evaluated from the standard error of the experimental data of θ±

p (r, t), which were directly used in the theoretical evaluation.
The parameters on the nematic tilt angle were set to be θ∞

n = 0.2 and θ0
n = 0.25 on the basis of the time-lapse confocal observation data [Fig.S8(b); see

Appendix B]. The other parameter values were ε0 = 0.25, a0
n/ξ0 = 0.055 μm2/min, and a0

p/ξ0 = 0.8 μm/min (see Appendix B). The vertical dashed lines
indicate the defect core radius.

Relation to circular colonies formed from
isolated cells
Although many earlier studies have already investigated how
nonmotile bacteria construct three-dimensional structures, most
of them have focused on the process where isolated cells grow and
form circular colonies (21, 23, 24, 26, 30). In this situation, it has
been reported that the in-plane stress derived from cell growth is
maximized at the center of the colony (26, 35–37), which causes
a few cells to be verticalized first, locally, near the center (21, 23,
26). This is contrasted to the case of our experiments starting from
densely and uniformly distributed cells, in which cells were verti-
calized almost homogeneously and simultaneously (Video 1). We
checked if cell alignment plays any role in such circular colonies
(Video 3), but detected no significant correlation between the po-
sition of the first verticalization and the strength of the local ori-
entational order (Fig.S10; see Supplementary Information, Sec-

tion IV for details). Instead, we confirmed that shorter cells tend
to be verticalized first [Fig.S10(e)], in agreement with the recent
theory based on the torque balance (26). These suggest that, in
such isolated circular colonies, the spatially nonuniform stress
indeed constitutes a major contribution to the start of the three-
dimensional transition, as reported earlier (21, 23, 26), regard-
less of topological defects. Conversely, by using uniform colonies,
we reduced the effect of nonuniform stress and thereby revealed
the intriguing role of topological defects in the three-dimensional
transition.

Note also that a previous study (23) on circular colonies re-
ported that collisions between colonies also triggered the cell
extrusion in that case. In the case of uniform colonies from
numerous cells we studied, groups of cells merged and filled
holes to complete the formation of the two-dimensional bot-
tom layer [Video 1 and Fig.S11(a)]. We tested the possible in-
fluence of such collisions upon our defect analyses, by exam-
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ining whether hole filling events affected the defect formation.
Detecting the locations of the holes at t = −5 min [Fig.S11(a)]
and those of the defects at t = 0 [Fig.S11(b)], we confirmed
that hole filling events did not promote the formation of de-
fects [Fig.S11(c) and (d)]. Therefore, we conclude that our results
on the relevance of topological defects to the cell flow and the
three-dimensional growth are not significantly affected by cell
collisions that preceded the formation of the complete bottom
layer.

Concluding remarks
In summary, we showed the relevance of topological defects to
the three-dimensional growth of growing nonmotile E. coli popula-
tions, unveiling the emergence of polar order and resulting novel
properties endowed with this active nematic system. When cul-
tured from densely and uniformly distributed populations, cells
started to construct the three-dimensional structure a short while
after they filled the bottom plane. Since then, the net influx to-
ward both +1/2 and −1/2 defects appeared, which may have pro-
moted the vertical growth of colonies. The influx toward −1/2 de-
fects was unexpected from the existing theory of active nemat-
ics, but we revealed that this resulted from the three-dimensional
tilting of cells around defects and the polar order induced
thereby. We extended the active nematics theory to incorporate
these effects and successfully accounted for the experimental
observation.

Our results suggest the role of −1/2 defects in the formation
of three-dimensional structures of nonmotile cell populations,
which has been overlooked compared to that of +1/2 defects sup-
ported by many recent studies on motile cells (5, 6, 13, 16, 17,
19). Although it is fair to recall that the strength of the effects
reported here, i.e., the height increase at the defects and the cell
influx thereto, is not large in our setup, it is possible that verti-
cal growth may have been prevented by the presence of the agar.
Further investigation is needed to see whether the colony height
above the defects can grow further, by alternative methods that
can stably measure sessile E. coli populations for a longer period
of time, and whether the orientation and topological defects in
intermediate layers may also affect the colony height. Besides, it
is important to contemplate the possibility of physiological sig-
nificance that topological defects may ultimately have. In Bacillus
subtilis colonies, it has been found that the roughness of the colony
surface can change the wettability of the biofilm, making it more
resistant to droplets that may contain toxic substances (38–42). It
is therefore tempting to investigate the possibility that the local
vertical growth mediated by topological defects might be involved
in such surface morphology.

Finally, the emerging polar order and the influx toward −1/2
defects reported in this work may provide a novel characteriza-
tion of nonmotile but growing active matter, contrasted with the
standard active matter for self-propelled particles. As such, these
results may also shed a new light on other cellular systems with
three-dimensional structures. In this context, it is of great im-
portance to elucidate how the polar order is formed when cells
start to tilt. Our observations show that the direction of the po-
lar order [Fig.4(c) and (d)] and that of the velocity field [Fig.2(b)
and (c) arrows, typical of extensile active nematics (31)] tend to
be oriented oppositely. This suggests that the polar order may
be driven by the active stress originating from the nematic ori-
entation. The recently reported instability of the in-plane orien-
tation in extensile active nematics (43) may also be a hint. It is
also important to understand how the absence of motility is in-

volved in this mechanism; qualitatively, we may argue that the
lack of cell motility would help maintain the cell tilting. Further,
elucidation of the mechanism of the polar order formation and
quantitative prediction of the resulting polar angle as well as the
polarity-induced force are key tasks left for future studies, which
will also clarify the relevance of our findings to other cellular
populations.
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Appendix A: experimental methods
Strains, culture media, and sample setup
We used a wild-type Escherichia coli strain MG1655 and its mu-
tant MG1655-pZA3R-EYFP that contains a plasmid pZA3R-EYFP
expressing enhanced yellow fluorescent proteins. We used LB
broth (tryptone 1 wt%, sodium chloride 1 wt%, and Yeast extract
0.5 wt%) and TB+Cm medium (tryptone 1 wt%, sodium chloride
1 wt%, and chloramphenicol 165 μg/ml). To prepare nutrient agar
pads, we added agar powder to medium, solidified it by a mi-
crowave oven, then cut it into squares of size 13 × 13 mm. For
each observation, we inoculated bacterial suspension on a cov-
erslip and put an agar pad on the suspension. We then attached
the following on the coverslip, surrounding the agar pad, to pre-
vent the agar from drying out [Fig.1(a)]: a frame seal (SLF0601,
Bio-Rad), a 3D printed PLA spacer (5 mm height, hollow square,
inner dimensions 14 × 14 mm and outer dimensions 22 × 22 mm),
another frame seal, then a plastic cover that enclosed the inner
region. Details on the strain and the culture condition in each ex-
periment are provided below and in Table A1. The E. coli strains we
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used did not swim at all in our experimental conditions (Videos 1,
2, and 3).

Confocal observations of uniform colonies
formed from numerous cells
We used the mutant strain MG1655-pZA3R-EYFP that expresses
enhanced yellow fluorescent proteins. Before the observations,
we inoculated the strain from a glycerol stock into 2 ml TB+Cm
medium in a test tube. After shaking it overnight at 37◦C, we trans-
ferred 20 μl of the incubated suspension to 2 ml fresh TB+Cm
medium and cultured it until the optical density (OD) at 600 nm
wavelength reached 0.1–0.5. The bacterial suspension was finally
concentrated to OD = 5 by a centrifuge, and 1 μl of the suspension
was inoculated between the coverslip and the agar pad (1.5 wt%
agar).

The sample was placed on the microscope stage, in a stage-top
incubator maintained at 37◦C. The microscope we used was Le-
ica SP8, equipped with a 63× (N.A. 1.40) oil immersion objective
and operated by Leica LasX. The data shown in Figs.1, 3, 4, S1, and
S2 were obtained by a single end-point observation, in which we
cultured the colonies without excitation light until 14 hours after
the cells had filled the observation area. We also show data ob-
tained by another biological replicate with a different substrate
and agar pad in Fig.S7. For each set of these data, we captured
three-dimensional images of size 184.52 × 184.52 × 16 μm from
20 separate regions. The optical resolution, as evaluated by the
formula of the point-spread function, was about 140 nm in the
horizontal plane and 250 nm in the vertical direction. The confo-
cal pinhole size was 0.21 Airy unit. For the data shown in Fig.S8,
we carried out a single time-lapse observation and obtained im-
ages of size 184.52 × 184.52 × 6.4 μm from four separate regions
with the time interval 15 min. The image pixel size was ≈0.18 μm
in the xy-plane and 0.16 μm along the z-axis.

Analysis of confocal images
For each region, we chose the plane corresponding to the bottom
layer and measured the two-dimensional cell orientation n(R) by
the structure tensor method. The image pixel size was ≈0.18 μm.
After sharpening the images by a high-pass filter, we calculated
the structure tensor J(R) at a given pixel R = (X,Y ) by

J(R) =
[

[�XI,�XI]R, [�YI,�XI]R

[�XI,�YI]R , [�YI,�YI]R

]
, (A1)

with the image intensity I(X, Y), �XI ≡ I(X + 1, Y) − I(X
− 1, Y), �YI ≡ I(X, Y + 1) − I(X, Y − 1), and [g, h]R ≡∑

(X′,Y ′ )∈ROI�R
g(X′,Y ′ )h(X′,Y ′ ) f σ

R (X′,Y ′ ). Here, the summation is
taken over a region of interest ROI�R, which is a square of size �

≈ 7.2 μm (40 pixels) centered at R, and f σ
R (X′,Y ′ ) is the Gaussian

kernel defined by f σ
R (X′,Y ′ ) ≡ exp[− (X′−X)2+(Y ′−Y )2

2σ 2 ] with σ ≈ 1.8 μm
(10 pixels). Then the cell orientation n(R) is given by the eigen-
vector of J(R) associated with the smallest eigenvalue λmin(R). The
orientation n(R) can also be represented by angle ψ (R) such that
n = ±(cos ψ, sin ψ ) with −π/2 ≤ ψ < π/2.

To detect topological defects, we first calculated the nematic
order parameter by

S(R) = 〈sin 2ψ〉2
ROI�R

+ 〈cos 2ψ〉2
ROI�R

, (A2)

where 〈·〉ROI�R
denotes the spatial average within ROI�R. Then, we lo-

cated the positions of local minima of S(R) as candidates of topo-
logical defect cores. For each candidate point, we calculated the
topological charge q = 1

2π

∮
C dψ , where C is a square closed path

with a side of about 3.6 μm (20 pixels) centered at the candidate
point. The candidate point is regarded as a topological defect if q
= ±1/2, and dismissed otherwise. To determine the angle of the
arm of each defect [Fig.1(d) inset], we used the profile of |ψ − φ|
on C, where φ is the azimuth with respect to the defect core. A
single minimum of |ψ − φ| exists for each +1/2 defect, while there
are three local minima for each −1/2 defect. Each minimum point
corresponds to an arm of the defect. Blue trefoils indicating −1/2
defects in Fig.1(c) were drawn by setting one of the arms of the tre-
foil at the angle of the global minimum, with the other two arms
added by rotating the first arm by 120◦. We thereby obtained the
two-dimensional locations of all defects and their signs.

To investigate the dependence of the colony height on topolog-
ical defects, we picked up hundreds of isolated defects, separated
by a distance longer than 9 μm from the nearest defect. For com-
parison, we also randomly selected 1000 points, which are sepa-
rated more than 9 μm from defects. For a given position in the
xy-plane, we obtained the image intensity profile along the z-axis,
with the interval of z-slices being 0.16 μm. The height was then de-
termined by the length of the region whose intensity was higher
than 20% of the maximum intensity in this profile.

The three-dimensional tilting of the cells around defects was
characterized as follows. First, for each defect, we rotated the con-
focal image horizontally so that the defect arm was orientated in
the positive direction of the x-axis. For −1/2 defects, we did this ro-
tation for each of their three arms and obtained a set of three im-
ages from each defect. Then, for each rotated confocal image I(r),
where r is the coordinate relative to the defect, we obtained the
three-dimensional cell orientation n3(r) by the three-dimensional
version of the structure tensor method. For each pixel r = (x, y, z),
which was chosen from the plane corresponding to the bottom
layer in each region, we calculated the three-dimensional struc-
ture tensor:

J(r) =

⎡
⎢⎣ [�xI,�xI]r

[
�yI,�xI

]
r [�zI,�xI]r[

�xI,�yI
]
r

[
�yI,�yI

]
r

[
�zI,�yI

]
r

[�xI,�zI]r
[
�yI,�zI

]
r [�zI,�zI]r

⎤
⎥⎦ , (A3)

where �xI ≡ I(x + 1, y, z) − I(x − 1, y, z), �yI and �zI are defined like-
wise, [g, h]r ≡ ∑

r′∈ROI
�x ,�y ,�z
r

g(r′ )h(r′ ) f σ
r (r′ ). Here, the summation is

taken over a three-dimensional region of interest ROI�x,�y,�z
r , which

is a cuboid of size �x × �y × �z centered at r, with �x = �y ≈
4.3 μm (24 pixels) and �z ≈ 3.8 μm (24 pixels). The Gaussian ker-
nel f σ

r (r′ ) is defined by f σ
r (r′ ) ≡ exp[− (r′−r)2

2σ 2 ] with σ = 2.2 μm. Then,
the three-dimensional cell orientation n3(r) is given by the eigen-
vector of J(r) associated with the smallest eigenvalue. The orien-
tation n3(r) is then represented by angles ψ (r) and θ (r) such that
n3 = (cos θ cos ψ, cos θ sin ψ, sin θ ) with 0 ≤ ψ < 2π and −π/2 ≤ θ <

π/2. As is clear from the definition, the angle ψ (r) specifies the two-
dimensional cell orientation n(r) by n = (cos ψ, sin ψ ) and θ (r) in-
dicates the angle between the three-dimensional orientation and
the xy-plane. Note that n3(r) and −n3(r) are equivalent, so that the
sign of n(r) and θ (r) can be changed simultaneously.

To investigate statistical properties of the cell tilt angle around
±1/2 topological defects, we need to define tilt angles whose sign
can be determined unambiguously. The simplest choice is to take
the ensemble average of |θ (r)|, which can be used to detect the
presence of the three-dimensional tilting. We took this average
over isolated defects of each sign, separated by a distance longer
than 9 μm from the nearest defect, and this defines our θ±

n (r). To
characterize the polar order, we need an angle that can take both
positive and negative values. To define such an angle, we use the
director field n±

ref (r) ≡ (cos(±φ/2), sin(±φ/2)) around ±1/2 defects,
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Table A1. List of experimental measurements in this study.

Measurement Strain
Initial cell

density Data

uniform colony, end-point confocal #1 a mutant MG1655-pZA3R-EYFP high Figs.1, 3, 4, S1, and S2
uniform colony, end-point confocal #2 a mutant MG1655-pZA3R-EYFP high Fig.S7
uniform colony, phase contrast #1 a wile-type MG1655 high Fig.2, S3, and S10
uniform colony, phase contrast #2 a wile-type MG1655 high Fig.S5
uniform colony, time-lapse confocal #1 a mutant MG1655-pZA3R-EYFP high Fig.S8
circular colony, phase contrast #1 a wile-type MG1655 low Fig.S10
circular colony, phase contrast #2 a wile-type MG1655 low Fig.S10

with the azimuth φ of the position r in the xy-plane, and took the
average of the field θ (r)sign[n±

ref (r) · n(r)] over isolated defects (with
the same criterion on the distance from other defects). This is our
θ±

p (r) which characterized the polar order. The polarity-induced
force is then f±

p (r) ∝ θ±
p (r)n±

ref (r). This right-hand side is shown in
Fig.4(c) and (d), and its radial component in Fig.4(e) and (f).

Phase-contrast observation of uniform colonies
formed from numerous cells
We used the wild-type strain MG1655. Before the time-lapse obser-
vation, we inoculated the strain from a glycerol stock into 2 ml LB
broth in a test tube. After shaking it overnight at 37◦C, we trans-
ferred 20 μl of the incubated suspension to 2 ml fresh LB broth
and cultured it until OD at 600 nm wavelength reached 0.1–0.3.
The bacterial suspension was finally concentrated to OD = 5 by
a centrifuge, and 1 μl of the suspension was inoculated between
the coverslip and the LB agar pad (1.5 wt% agar).

The sample was placed on the microscope stage, in an incuba-
tion box maintained at 37◦C. The microscope we used was Leica
DMi8, equipped with a 63× (N.A. 1.30) oil immersion objective and
a CCD camera (Leica DFC3000G), and operated by Leica LasX. The
image pixel size was ≈0.17 μm. For the data shown in Figs.2, S3,
and S10, we used a single substrate and carried out a time-lapse
observation with the time interval 1 min for 30 separate regions of
dimensions 110.03 × 81.97 μm. We also obtained a biological repli-
cate using another substrate for the data shown in Fig.S5. For each
region, we determined the frame at t = 0, i.e., the frame in which
cells filled the observation area for the first time. We then mea-
sured the cell orientation n(R) and detected topological defects
in all frames, by the method described below. We used isolated
topological defects only, each separated by a distance longer than
9.5 μm from the nearest defect. As a result, we obtained hundreds
of defects for each time.

Phase-contrast observation of circular colonies
formed from a few cells
We used the wild-type strain MG1655. We cultured bacteria in the
same way as for the observation of uniform colonies. The bacte-
rial suspension was finally diluted to OD = 0.01, and 1 μl of the
suspension was inoculated between the coverslip and the LB agar
pad (2.0 wt% agar).

The imaging process and the condition during the observation
were the same as those for the observation of uniform colonies.
We carried out time-lapse observations with the time interval
1 min for 30 isolated colonies, which started to form from a few
cells. We repeated the experiments twice using different sub-
strates and acquired data from 60 colonies in total. From each
colony, we chose the frame right before the first extrusion of
a cell from the bottom layer took place. We used 60 such im-

ages from the 60 colonies for analysis. For each colony, we bi-
narized the image, and obtained the area A by the total number
of pixels, the center position by the center of mass, and the ra-
dius Rmax by πR2

max = A, using the regionprops function of MAT-
LAB. The first extruded cell was detected manually, by using a
black spot that a tilted cell exhibits in the phase-contrast image
(see Video 3). We manually labeled pixels contained in each ex-
truded cell, and obtained the position as well as the mean and the
standard deviation of the coherency over the labeled pixels (see
the section “Analysis of phase-contrast images” for the method
to evaluate the coherency). To obtain the spatial dependence of
the coherency shown by boxplots in Fig.S10(b), we divided the
space into regions bordered by concentric circles, with the radii
that increased by R/Rmax = 0.1. The length of cells was evaluated
manually from the major axis of each cell by using a painting
software.

Analysis of phase-contrast images
Using phase-contrast images from uniform and circular colonies,
we measured the two-dimensional cell orientation n(R) and de-
tected topological defects, in the same manner as those for con-
focal observations. The image pixel size was ≈0.17 μm. The struc-
ture tensor was calculated with the ROI size � ≈ 6.8 μm (40 pixels)
and the characteristic length of the Gaussian filter, σ ≈ 1.7 μm (10
pixels). The detection of topological defects was carried out with
the closed path C with a side of about 3.4 μm (20 pixels), as in
Fig.2(a) and Video 2.

In addition to the cell orientation n(R), we also obtained the
coherency parameter C(R) defined by

C(R) = λmax(R) − λmin(R)
λmax(R) + λmin(R)

, (A4)

with the largest eigenvalue λmax(R). This quantifies the degree of
the local nematic order.

For uniform colonies, we also measured the velocity field of
the cells around the detected defects, by particle image velocime-
try (PIV). For this, we used MatPIV (44) (open source PIV tool-
box for MATLAB), with the PIV window set to be a square of
size ≈2.7 μm (16 pixels). To take averages over defects, for each
defect, we rotated the image so that the defect arm was ori-
ented in the positive direction of the x-axis. For −1/2 defects, we
did this rotation for each of their three arms, and all of the re-
sulting velocity fields were used for the ensemble average. We
thereby obtained the ensemble-averaged velocity field v(r, t), as
a function of the coordinate r = (x, y) relative to the defect, and
time t.

The divergence of v(r) = (u(r), v(r)) was calculated as follows
(here, we omit t from the argument for simplicity). We first ob-
tained D(r) = u(x+1,y)−u(x−1,y)

2δ
+ v(x,y+1)−v(x,y−1)

2δ
with the pixel size δ ≈
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0.17 μm. We then calculated the divergence field by

(∇ · v)(r) =
∑

(x′,y′ )∈ROI�r
D(r′ ) f σ

r (x′, y′ )∑
(x′,y′ )∈ROI�r′

f σ
r (x′, y′ )

, (A5)

where ROI�r and the Gaussian kernel f σ
r (x′, y′ ) were defined as

above, but with � ≈ 2.7 μm (16 pixels) and σ ≈ 0.68 μm (5 pixels).

Appendix B: theoretical calculations
To theoretically account for the experimental result of the mean
radial velocity v̄±

r (r), in particular the influx toward −1/2 de-
fects shown in Fig.2(e) and (f), we solved the force balance equa-
tions Eqs. (1) and (2). While detailed descriptions on the solutions
are given in Supplementary Material, here, we outline the theo-
retical assumptions and the methods to obtain the theoretical re-
sults shown in Fig.4(g), which satisfactorily reproduced the exper-
imental data when the influx toward −1/2 defects was strongest.

First, we assume the director field winding uniformly around
a +1/2 or −1/2 defect, n±(r, φ) = (cos(±φ/2), sin(±φ/2)), where (r,
φ) is the two-dimensional polar coordinate, centered at the defect
core. The nematic order tensor Q±(r, φ) is then given by

Q±(r, φ) = S(r)

[
cos(±φ) sin(±φ)
sin(±φ) − cos(±φ)

]
, (B1)

with the scalar nematic order parameter S(r) left as a free parame-
ter. Based on the assumption that Q± minimizes the nematic free
energy, S(r) can be theoretically expressed by the following Padé
approximant (13, 45, 46):

S(r) = S0F(r/rS ), F(x) ≈ x

√
0.34 + 0.07x2

1 + 0.41x2 + 0.07x4
, (B2)

with the defect core radius rS and S0 = S(∞). To determine the
value of rS, we fitted Eq. (B2) to the experimental data of the co-
herency C(r) [Fig.S6(a) and (b)] and obtained rS = 1.2 μm. Note that,
because the angle field ψ (r) does not contain information of the
defect core, the nematic order parameter evaluated by Eq. (A2) is
not suitable for estimating rS. Concerning S0, it always appears as
a product with either ε or an, so that we fix S0 = 1 without loss of
generality.

The case without three-dimensional cell tilting, described by
Eq. (1), was already dealt with by earlier studies (13, 17). Since
Eq. (1) is linear, we can readily solve it and obtain, for the mean
radial velocity:

v̄±
r (r) = −ε

an

ξ0
S(r)

S′(r) ± S(r)/r
1 − ε2S(r)2

. (B3)

Then, we can show, with Eq. (B2), that it is negative for +1/2 defects
and positive for −1/2 defects, for all r > 0 (see Supplementary Ma-

terial). In Fig.2(h), by the dotted lines, we showed v̄±
r (r) for ε = 0.25,

an/ξ0 = 0.055 μm2/min, rS = 1.2 μm.
In fact, even in the presence of three-dimensional cell tilting

and polar order, i.e., in the case of Eq. (2), it is linear in v and the
solution for the case of ±1/2 defects is given by

v±(r, φ) = ξ−1
0 (1 − ε0 cos θ±

n (r, φ)Q± )−1

×
[
∇ · (−a0

n cos θ±
n (r, φ)Q± ) + a0

pθ±
p (r, φ)n±

]
. (B4)

Regarding the first term that describes the contribution by
nonuniform nematic tilting, we determined θ±

n (r, φ) by time-lapse
and end-point confocal observations. Because we could not obtain
clear spatial profile of θ±

n (r, φ) from the time-lapse observation due

to photobleaching, we used high-quality, end-point confocal im-
ages to determine the spatial profile, then calibrated its amplitude
by the time-lapse observation to account for the time period of in-
terest. First, on the spatial profile, our end-point confocal observa-
tion (Fig.3) suggests that θ±

n (r, φ) = θ∞
n + (θ0

n − θ∞
n ) exp(−r2/r2

θ ) with
constants θ∞

n , θ0
n , rθ , regardless of φ and the sign of the defect.

From the spatial profile, we obtained rθ = 1 μm. For the peak
height, we used time-lapse observations for 200 min ≤ t ≤ 250 min,
during which the influx toward −1/2 defects was strongest
for this strain (Fig.S8a), and estimated θ∞

n = 0.2 and θ0
n = 0.25

[Fig.S8(b)].
To see the influence of the nematic tilting, we numerically

calculated v̄±
r (r) with θ∞

n = 0.3 and θ0
n = 0.75, which were esti-

mated from the end-point confocal observation, without polar or-
der [Fig.2(h), the solid lines]. The other parameters were ε0 = 0.25,
an/ξ0 = 0.055 μm2/min, and rS = 1.2 μm. The strength of the influx
toward −1/2 defects obtained thereby was smaller than the exper-
imental result, indicating that the nematic tilting is insufficnent
to quantitatively explain the influx toward −1/2 defects.

For the polar contribution to Eq. (B4), we determined the
spatial structure of θ±

p (r, φ) by the end-point confocal ob-
servation [Fig.4(c) and (d)]. Then, we calibrated the am-
plitude by multiplying the ratio of 〈θ±

p 〉0<x<10 μm,y=0 from
the time-lapse observation for 200 min ≤ t ≤ 250 min
[Fig.S8(c)] to that from the end-point observation [Fig.4(c)
and (d)].

We are finally left to determine the following parameters: ε0,
a0

n/ξ0, and a0
p/ξ0. First, we note that, in the leading term, ε0 appears

in the form of a product with a0
nS0/ξ0 (see Supplementary Infor-

mation, Eq. (S23) for example), so that we chose ε0 = 0.25. Then,
we tuned a0

n/ξ0 and a0
p/ξ0 to reproduce the experimental data of

v̄±
r (r). When the end-point confocal observation data #1 were used,

we obtained a0
n/ξ0 = 0.055 μm2/min and a0

p/ξ0 = 0.8 μm/min, with
the results shown in Fig.4(g) [see also Fig.S9(a) to (c)]. When the
end-point confocal observation data #2 were used instead, we ob-
tained a0

n/ξ0 = 0.055 μm2/min and a0
p/ξ0 = 1.4 μm/min, with the

results shown in Fig.S9(b) to (d).
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